Краткий обзор выделения разделов в MySQL 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Краткий обзор выделения разделов в MySQL



 

Этот раздел обеспечивает концептуальный краткий обзор выделения разделов в MySQL 5.1.

Стандарт SQL не обеспечивает многого относительно физических аспектов хранения данных. Язык SQL непосредственно предназначен, чтобы работать независимо от любых структур данных или средств, лежащих в основе схем, таблиц, строк или столбцов, с которыми работает. Тем не менее, наиболее продвинутые системы управления базами данных развили некоторые средства определения физического расположения, которое нужно использовать для сохранения специфических частей данных в терминах аппаратных средств или даже файловых систем. В MySQL InnoDB обеспечил понятие пространства таблиц, так что сервер MySQL даже до введения выделения разделов, мог быть сконфигурирован, чтобы использовать различные физические каталоги для сохранения различных баз данных.

Partitioning берет это понятие и продвигает на шаг далее, позволяя Вам распределить части индивидуальных таблиц по файловым системам согласно правилам, которые Вы можете устанавливать в значительной степени так, как необходимо. В действительности, различные части таблицы сохранены как отдельные таблицы в различных местах. Выбранное пользователем правило, которым выполнен раздел данных, известно как функция выделения разделов, которая в MySQL может быть модулем, простым соответствием набору диапазонов или списков, внутренней или линейной хэш‑функцией. Функция выбрана согласно типу выделения разделов, определенному пользователем, и берет как параметр значение обеспеченного пользователем выражения. Это выражение может быть целочисленным значением столбца или функция, действующая на один или большее количество значений столбца, и возвращающая целое число. Значение этого выражения передано функции выделения разделов, которая возвращает целочисленное значение, представляющее номер раздела, в котором эта специфическая запись должна быть сохранена. Эта функция должна быть непостоянная и непроизвольная. Это не может содержать любые запросы, но может использовать фактически любое выражение SQL, которое является допустимым в MySQL, поскольку то выражение возвращает положительное целое число меньше, чем MAXVALUE (самое большое возможное положительное целое число). Примеры выделения разделов функций могут быть найдены в обсуждениях выделения разделов позже в этой главе.

Это известно как горизонтальное выделение разделов (horizontal partitioning), то есть различные строки таблицы могут быть назначены к различным физическим разделам. MySQL 5.1 не поддерживает вертикальное выделение разделов (vertical partitioning), в котором различные столбцы таблицы назначены различным физическим разделам. Не имеется никаких планов представить вертикальное выделение разделов в MySQL 5.1.

Выделение разделов включено в ‑max выпуски MySQL 5.1 (то есть двоичные версии 5.1 ‑max сформированы с ‑‑with‑partition). Если MySQL сформирован с выделением разделов, ничто далее не должно быть выполнено, чтобы допустить это (например, никакие специальные записи не требуются в Вашем файле my.cnf). Вы можете определять, поддерживает ли сервер выделение разделов посредством команды SHOW VARIABLES типа этого:

 

mysql> SHOW VARIABLES LIKE '%partition%';

Variable_name Value have_partitioning YES

1 row in set (0.00 sec)

 

Если Вы не видите, что переменная have_partitioning со значением YES перечислена как показано выше в выводе соответствующей SHOW VARIABLES, то Ваша версия MySQL не поддерживает выделение разделов.

До MySQL 5.1.6 эта переменная была именована have_partition_engine (Глюк #16718).

Для создания разбитых на разделы таблиц, Вы можете использовать большинство типов хранения, которые обеспечиваются сервером MySQL. MySQL‑выделение разделов выполняется в отдельном уровне и может взаимодействовать с любыми из них. В MySQL 5.1 все разделы той же самой разбитой на разделы таблицы должны использовать тот же самый тип памяти, например, Вы не можете использовать MyISAM для одного раздела, а InnoDB для другого. Однако, не имеется ничего предотвращающего Вас от использования различных типов памяти для различных разбитых на разделы таблиц на том же самом сервере MySQL или даже в той же самой базе данных.

Обратите внимание:: выделение разделов MySQL не может использоваться с типами памяти MERGE или CSV. До MySQL 5.1.6 также было невозможно создать разбитую на разделы таблицу, использующую BLACKHOLE (Глюк #14524). Выделение разделов KEY обеспечивается для использования с NDBCluster, но другие типы определяемого пользователем выделения разделов не обеспечиваются для таблиц Cluster в MySQL 5.1.

Чтобы использовать специфический тип памяти для разбитой на разделы таблицы, необходимо только использовать опцию [STORAGE] ENGINE точно как для не разбитой на разделы таблицы. Однако, Вы должны иметь в виду, что [STORAGE] ENGINE (и другие параметры таблицы) должен быть перечислен прежде, чем любые параметры выделения разделов используются в инструкции CREATE TABLE. Этот пример показывает, как создать таблицу, которая разбита на 6 разделов по hash и использует тип памяти InnoDB:

 

CREATE TABLE ti (id INT, amount DECIMAL(7,2), tr_date DATE)

ENGINE=INNODB PARTITION BY

HASH(MONTH(tr_date)) PARTITIONS 6;

 

Обратите внимание, что каждое предложение PARTITION может включать опцию [STORAGE] ENGINE, но в MySQL 5.1 это не имеет никакого эффекта.

Обратите внимание: выделение разделов применяется ко всем данным и индексам таблицы. Вы не можете выделять разделы только данных и не индексы или наоборот, при этом Вы не можете выделять разделы только части таблицы.

Данные и индексы для каждого раздела могут быть назначены к специфическому каталогу, используя опции DATA DIRECTORY и INDEX DIRECTORY для предложения PARTITION инструкции CREATE TABLE, используемой чтобы создать разбитую на разделы таблицу. Кроме того, MAX_ROWS и MIN_ROWS могут использоваться, чтобы определить максимальные и минимальные числа строк, соответственно, которые могут быть сохранены в каждом разделе таблицы.

 

Некоторые из преимуществ выделения разделов:

1. Можно сохранять большее количество данных в одной таблице, чем может быть записано на одиночном диске или файловой системе.

2. Данные, которые теряют полноценность, часто легко могут быть удалены из таблицы, удаляя раздел, содержащий только эти данные. Наоборот, процесс добавления новых данных в некоторых случаях может быть значительно облегчен, добавляя новый раздел специально для этих данных.

3. Некоторые запросы могут быть значительно оптимизированы в том, что данные, удовлетворяющие предложению WHERE могут быть сохранены только на одном или большем количестве разделов, таким образом исключая любые остающиеся разделы из поиска. Поскольку разделы могут быть изменены после того, как разбитая на разделы таблица была создана, Вы можете реорганизовать данные, чтобы расширить частые запросы, которые, возможно, были медленными, когда схема выделения разделов была сначала установлена. Эта возможность, иногда упоминаемая как сокращение раздела (partition pruning), была выполнена в MySQL 5.1.6.

4. Другие выгоды, обычно связываемые с выделением разделов, включены в следующий список. Эти свойства в настоящее время не выполнены в MySQL Partitioning, но высоки в списке приоритетов.

5. Запросы, включающие составные функции типа SUM() и COUNT(), легко могут быть распараллелены. Простым примером такого запроса мог бы быть SELECT salesperson_id, COUNT(orders) as order_total FROM sales GROUP BY salesperson_id;. Запрос может быть выполнен одновременно на каждом разделе, и результат получен просто суммируя результаты, полученные для всех разделов.

6. Достижение большей производительности запроса благодаря разбросу данных по разным дискам.

 

Типы раздела

 

Этот раздел обсуждает типы выделения разделов, которые доступны в MySQL 5.1. Они включают:

 

– RANGE partitioning: назначает строки разделам, основанным на значениях столбца, попадающих внутрь заданного диапазона.

– LIST partitioning: подобно выделению разделов диапазоном, за исключением того, что раздел выбран основанным на столбцах, соответствующих одному из набора дискретных значений.

– HASH partitioning: раздел выбран основанным на значении, возвращенном определяемым пользователем выражением, которое функционирует на значениях столбца в строках, которые будут вставлены в таблицу. Функция может состоять из любого выражения, допустимого в MySQL, которое выдает не отрицательное целочисленное значение.

– KEY partitioning: подобно выделению разделов hash, за исключением того, что обеспечены только один или большее количество столбцов, которые будут оценены, и сервер MySQL обеспечивает собственную хэш‑функцию. Эти столбцы могут содержать не целочисленные значения, так как хэш‑функция, обеспеченная MySQL, гарантирует целочисленный результат, независимо от типа данных столбца.

 

Очень общее использование выделения разделов базы данных должно выделять данные по времени. Некоторые системы баз данных поддерживают явное выделение разделов даты, которое MySQL не выполняет в 5.1. Однако, нетрудно создать в MySQL схемы выделения разделов, основанные на столбцах DATE, TIME, DATETIME или на выражениях, использующих такие столбцы.

При выделении разделов KEY или LINEAR KEY, Вы можете использовать столбец DATE, TIME или DATETIME как столбец выделения разделов без того, чтобы выполнить любую модификацию значения столбца. Например, эта инструкция создания таблицы совершенно допустима в MySQL:

 

CREATE TABLE members (firstname VARCHAR(25) NOT NULL,

lastname VARCHAR(25) NOT NULL,

username VARCHAR(16) NOT NULL,

email VARCHAR(35), joined DATE NOT NULL)

PARTITION BY KEY(joined) PARTITIONS 6;

 

Другие типы выделения разделов MySQL, однако, требуют выражения выделения разделов, которое выдает целочисленное значение или NULL. Если Вы желаете использовать дата‑основанное выделение разделов RANGE, LIST, HASH или LINEAR HASH, Вы можете просто использовать функцию, которая функционирует на столбце DATE, TIME или DATETIME и возвращает такое значение, как показано здесь:

 

CREATE TABLE members (firstname VARCHAR(25) NOT NULL,

lastname VARCHAR(25) NOT NULL,

username VARCHAR(16) NOT NULL,

email VARCHAR(35), joined DATE NOT NULL)

PARTITION BY RANGE(YEAR(joined)) (

PARTITION p0 VALUES LESS THAN (1960),

PARTITION p1 VALUES LESS THAN (1970),

PARTITION p2 VALUES LESS THAN (1980),

PARTITION p3 VALUES LESS THAN (1990),

PARTITION p4 VALUES LESS THAN MAXVALUE);

 

Выделение разделов в MySQL оптимизирован для использования с функциям. TO_DAYS() и YEAR(). Однако, Вы можете использовать другие функции даты и времени, которые возвращают целое число или NULL, типа WEEKDAY(), DAYOFYEAR() или MONTH().

Важно помнить, что независимо от типа выделения разделов, которое Вы используете, разделы всегда нумеруются автоматически и в той последовательности, в какой созданы, при старте с 0. Когда новая строка вставлена в разбитую на разделы таблицу, это числа раздела, которые используются в идентификации правильного раздела. Например, если Ваша таблица использует 4 раздела, эти разделы пронумерованы 0, 1, 2 и 3. Для типов разделов RANGE и LIST необходимо гарантировать, что имеется раздел, определенный для каждого номера раздела. Для выделения разделов HASH использованная функция пользователя должна возвратить целочисленное значение большее, чем 0. Для выделения разделов KEY об этой проблеме позаботится автоматическая хэш‑функция, которую сервер MySQL использует внутренне.

Имена разделов вообще следуют правилам для других MySQL‑идентификаторов, типа тех, что применяются для таблиц и баз данных. Однако, Вы должны обратить внимание, что имена раздела не чувствительны к регистру. Например, следующая инструкция CREATE TABLE терпит неудачу как показано:

 

mysql> CREATE TABLE t2 (val INT)

– > PARTITION BY LIST(val) (

– > PARTITION mypart VALUES IN (1,3,5),

– > PARTITION MyPart VALUES IN (2,4,6));

ERROR 1488 (HY000): Duplicate partition name mypart

 

Сбой происходит потому, что MySQL не видит никакого различия между именами разделов mypart и MyPart.

Когда Вы определяете число разделов для таблицы, это должно быть выражено как положительный ненулевой целочисленный литерал без начальных нулей, и не может быть выражением типа 0.8E+01 или 6‑2, даже если это оценивается как целое число. Начиная с MySQL 5.1.12, десятичные дроби больше не усечены, но взамен отвергнуты полностью.

В разделах, которые следуют далее, мы не обязательно рассматриваем все возможные формы для синтаксиса, который может использоваться для создания каждого типа раздела.

 

RANGE Partitioning

 

Таблица, которая разбита на разделы диапазоном, разбита на разделы таким способом, которым каждый раздел содержит строки, для которых значение выражения выделения разделов находится внутри данного диапазона. Диапазоны должны быть непрерывны, но не перекрываться и определены, используя оператор VALUES LESS THAN. Для следующих немногих примеров, предположите, что Вы создаете таблицу типа следующей, чтобы сохранить персональные записи для цепочки из 20 видеоклипов, пронумерованных от 1 до 20:

 

CREATE TABLE employees (id INT NOT NULL, fname VARCHAR(30),

lname VARCHAR(30),

hired DATE NOT NULL DEFAULT '1970‑01‑01',

separated DATE NOT NULL DEFAULT '9999‑12‑31',

job_code INT NOT NULL, store_id INT NOT NULL);

 

Эта таблица может быть разбита на разделы диапазоном по‑разному, в зависимости от Ваших потребностей. Один способ состоит в том, чтобы использовать столбец store_id. Например, Вы могли бы выделять разделы таблицы 4 способами, добавляя предложение PARTITION BY RANGE как показано здесь:

 

CREATE TABLE employees (id INT NOT NULL, fname VARCHAR(30),

lname VARCHAR(30),

hired DATE NOT NULL DEFAULT '1970‑01‑01',

separated DATE NOT NULL DEFAULT '9999‑12‑31',

job_code INT NOT NULL, store_id INT NOT NULL)

PARTITION BY RANGE (store_id)

(PARTITION p0 VALUES LESS THAN (6),

PARTITION p1 VALUES LESS THAN (11),

PARTITION p2 VALUES LESS THAN (16),

PARTITION p3 VALUES LESS THAN (21));

 

В этой схеме выделения разделов все строки, соответствующие записям, занимающим номера от 1 до 5, сохранены в разделе p0, от 6 до 10 в p1 и т. д. Обратите внимание, что каждый раздел определен чтобы хранить номера от самого низкого до самого высокого. Это требование синтаксиса PARTITION BY RANGE: Вы можете думать об этом как об аналоге переключателя switch … case в C или Java в этом отношении.

Просто определить, что новая строка, содержащая данные (72, 'Michael', 'Widenius', '1998‑06‑25', NULL, 13), вставлена в раздел p2, но что случается, когда Ваша цепочка, добавляет 21‑ю запись? Согласно этой схеме, не имеется никакого правила, которое покрывает строку, с store_id большим чем 20, так что результатом будет ошибка, потому что сервер не знает, где поместить это. Вы можете обойти сбой, используя предложение VALUES LESS THAN в инструкции CREATE TABLE, которая обеспечивает все значения большие, чем явно именованное самое высокое значение:

 

CREATE TABLE employees (id INT NOT NULL, fname VARCHAR(30),

lname VARCHAR(30),

hired DATE NOT NULL DEFAULT '1970‑01‑01',

separated DATE NOT NULL DEFAULT '9999‑12‑31',

job_code INT NOT NULL, store_id INT NOT NULL)

PARTITION BY RANGE (store_id) (PARTITION p0 VALUES LESS THAN (6),

PARTITION p1 VALUES LESS THAN (11),

PARTITION p2 VALUES LESS THAN (16),

PARTITION p3 VALUES LESS THAN MAXVALUE);

 

MAXVALUE представляет самое большое возможное целочисленное значение. Теперь, любые строки, чье значение столбца store_id является большим или равным 16 (самое высокое определенное значение), сохранены в разделе p3. В некоторой точке в будущем, когда число записей увеличится до 25, 30 или больше, Вы можете использовать инструкцию ALTER TABLE, чтобы добавить новые разделы для диапазонов 21‑25, 26‑30 и т. д.

В аналогичном режиме Вы могли бы выделять разделы таблицы, основанные на кодах работы служащего, то есть на диапазонах значений столбца job_code. Например, приняв, что коды работы с двумя цифрами используются для регулярных (in‑store) рабочих, коды с тремя цифрами используются для ведомства и персонала поддержки, а четырехразрядные коды для позиций управления, Вы могли бы создать разбитую на разделы таблицу, используя:

 

CREATE TABLE employees (id INT NOT NULL, fname VARCHAR(30),

lname VARCHAR(30),

hired DATE NOT NULL DEFAULT '1970‑01‑01',

separated DATE NOT NULL DEFAULT '9999‑12‑31',

job_code INT NOT NULL, store_id INT NOT NULL)

PARTITION BY RANGE (job_code) (

PARTITION p0 VALUES LESS THAN (100),

PARTITION p1 VALUES LESS THAN (1000),

PARTITION p2 VALUES LESS THAN (10000));

 

В этом образце все строки в отношении рабочих in‑store были бы сохранены в разделе p0, строки для ведомства и персонала поддержки в p1, а администраторы в разделе p2.

Также возможно использовать выражение в предложениях VALUES LESS THAN. Однако, MySQL должен быть способен оценить возвращаемое значение выражения как часть сравнения LESS THAN (<).

Вы можете использовать выражение, основанное на одном из двух столбцов DATE. Например, предположим, что Вы желаете выделить разделы основанные на годе, в котором каждый служащий оставил компанию, то есть значение YEAR(separated). Пример инструкции CREATE TABLE, которая осуществляет такую схему выделения разделов, показывается здесь:

 

CREATE TABLE employees (id INT NOT NULL, fname VARCHAR(30),

lname VARCHAR(30),

hired DATE NOT NULL DEFAULT '1970‑01‑01',

separated DATE NOT NULL DEFAULT '9999‑12‑31',

job_code INT, store_id INT)

PARTITION BY RANGE (YEAR(separated)) (

PARTITION p0 VALUES LESS THAN (1991),

PARTITION p1 VALUES LESS THAN (1996),

PARTITION p2 VALUES LESS THAN (2001),

PARTITION p3 VALUES LESS THAN MAXVALUE);

 

В этой схеме для всех служащих, кто оставил работу до 1991, строки сохранены в разделе p0, для периода 1991‑1995 в p1, для 1996‑2000 в p2, а для любых рабочих, кто оставил фирму после 2000 года в p3.

Выделение разделов по диапазону особенно полезно когда:

 

Вы хотите удалить старые данные. Если Вы используете схему выделения разделов, показанную выше, Вы можете просто использовать ALTER TABLE employees DROP PARTITION p0;, чтобы удалять все строки в отношении служащих, оставивших работу до 1991. Для таблицы с очень многими строками, это может быть намного более эффективно, чем выполнение запроса DELETE, например,

 

DELETE FROM employees WHERE YEAR(separated) <=1990;.

 

Вы хотите использовать столбец, содержащий значения даты, времени или значения, являющиеся результатом некоторого другого ряда.

 

Вы часто выполняете запросы, которые зависят непосредственно от столбца, используемого для выделения разделов таблицы. Например, при выполнении запроса типа

SELECT COUNT(*) FROM employees WHERE YEAR(separated) = 2000 GROUP BY store_id;,

MySQL может быстро определять, что только раздел p2 должен быть просмотрен, потому что остающиеся разделы не могут содержать записи, удовлетворяющие предложению WHERE.

 

LIST Partitioning

 

Как в выделении разделов RANGE, каждый раздел должен быть явно определен. Главное различие в том, что в выделении разделов списка, каждый раздел определен и выбран основываясь на членстве значения столбца в одном наборе значений списков, а не непрерывных диапазонов значений. Это выполнено, используя PARTITION BY LIST(expr), где expr значение столбца или выражение, основанное на значении столбца и возврате целочисленного значения, а затем определение каждого раздела посредством VALUES IN (value_list), где value_list разделяемый запятыми список целых чисел.

Обратите внимание: В MySQL 5.1 возможно соответствовать только списку целых чисел (и возможно NULL) при выделении разделов LIST.

В отличие от случая с разделами, определенными диапазоном, разделы списка не должны быть объявлены в любом специфическом порядке.

Для примеров ниже будем считать, что базисное определение таблицы, которая будет разбита на разделы обеспечивается инструкцией CREATE TABLE, показанной здесь:

 

CREATE TABLE employees (id INT NOT NULL, fname VARCHAR(30),

lname VARCHAR(30),

hired DATE NOT NULL DEFAULT '1970‑01‑01',

separated DATE NOT NULL DEFAULT '9999‑12‑31',

job_code INT, store_id INT);

 

Предположите, что имеются 20 видеоклипов, распределенных среди 4 привилегий, как показано в следующей таблице:

Область

Store ID Numbers

Север3, 5, 6, 9, 17Восток1, 2, 10, 11, 19, 20Запад4, 12, 13, 14, 18Центр7, 8, 15, 16

 

Чтобы выделять разделы таблицы таким способом, чтобы строки для клипов, принадлежащих к той же самой области, были сохранены в том же самом разделе, Вы могли бы использовать инструкцию CREATE TABLE, показанную здесь:

 

CREATE TABLE employees (id INT NOT NULL, fname VARCHAR(30),

lname VARCHAR(30),

hired DATE NOT NULL DEFAULT '1970‑01‑01',

separated DATE NOT NULL DEFAULT '9999‑12‑31',

job_code INT, store_id INT)

PARTITION BY LIST(store_id) (

PARTITION pNorth VALUES IN (3,5,6,9,17),

PARTITION pEast VALUES IN (1,2,10,11,19,20),

PARTITION pWest VALUES IN (4,12,13,14,18),

PARTITION pCentral VALUES IN (7,8,15,16));

 

Это облегчает добавление или удаление записи в отношении специфических областей. Например, предположите, что все клипы в западной области проданы другой компании. Все строки в их отношении могут быть удалены запросом ALTER TABLE employees DROP PARTITION pWest;, который может быть выполнен намного более эффективно, чем эквивалентная инструкция DELETE FROM employees WHERE store_id IN (4,12,13,14,18);.

Как с RANGE и HASH partitioning, если Вы желаете выделить разделы таблицы столбцом, чье значение не целое число или NULL, Вы должны использовать выражение выделения разделов, основанное на том столбце, который возвращает такое значение. Например, предположите, что таблица, содержащая данные определена, как показано здесь:

 

CREATE TABLE employees (id INT NOT NULL, fname VARCHAR(30),

lname VARCHAR(30),

hired DATE NOT NULL DEFAULT '1970‑01‑01',

separated DATE NOT NULL DEFAULT '9999‑12‑31',

job_code CHAR(1), store_id INT);

 

В этой версии таблицы employees код работы является символом, а не числом. Каждый символ соответствует специфической работе, и мы желаем выделить разделы таблицы таким способом, чтобы записи для служащих, имеющих подобные работы, или работающих в том же самом отделе, были сгруппированы в том же самом разделе, согласно следующей схеме:

 

Категория работы или отдел

Коды работы

ManagementD, M, O, PSalesB, L, STechnicalA, E, G, I, TClericalK, N, YSupportC, F, J, R, VUnassignedEmpty

 

Так как мы не можем использовать символьные значения в списках, мы должны преобразовать их в целых числа или NULL. Для этой цели мы можем использовать функцию ASCII() на значении столбца. Кроме того, из‑за использования различных прикладных программ в разное время коды могут быть верхнего или нижнего регистра, значение empty означает "сейчас не назначен", представлением чего могут быть NULL, пустая строка или пробел. Разбитая на разделы таблица, которая осуществляет эту схему, показывается здесь:

 

CREATE TABLE employees (id INT NOT NULL, fname VARCHAR(30),

lname VARCHAR(30),

hired DATE NOT NULL DEFAULT '1970‑01‑01',

separated DATE NOT NULL DEFAULT '9999‑12‑31',

job_code CHAR(1), store_id INT)

PARTITION BY LIST(ASCII(UCASE(job_code))) (

PARTITION management VALUES IN(68, 77, 79, 80),

PARTITION sales VALUES IN(66, 76, 83),

PARTITION technical VALUES IN(65, 69, 71, 73, 84),

PARTITION clerical VALUES IN(75, 78, 89),

PARTITION support VALUES IN(67, 70, 74, 82, 86),

PARTITION unassigned VALUES IN(NULL, 0, 32));

 

Так как выражения не разрешаются в списках значения раздела, Вы должны внести в список коды ASCII для символов, которые должны быть согласованы. Обратите внимание, что ASCII(NULL) вернет NULL.

Важно: если Вы пробуете вставлять строку так, что значение столбца (или возвращаемое значение выражения выделения разделов) не найдено в любом из списков значения выделения разделов, запрос INSERT будет терпеть неудачу с ошибкой. Например, этот запрос будет терпеть неудачу:

 

INSERT INTO employees VALUES

(224, 'Linus', 'Torvalds', '2002‑05‑01', '2004‑10‑12', 'Q', 21);

 

Сбой происходит, потому что 81 (код ASCII для прописной буквы 'Q') не найден в любом из списков значения используемых, чтобы определить любой из разделов. Не имеется никаких перехватчиков catch‑all для list partitions, аналогичных VALUES LESS THAN(MAXVALUE), который приспосабливает значения, не найденные в любом из списков значения. Другими словами, любое значение, которое должно быть согласовано, должно быть найдено в одном из списков значений.

Как с выделением разделов RANGE, возможно объединить выделение разделов LIST, чтобы произвести составное выделение разделов (подвыделение разделов).

 

HASH Partitioning

 

Выделение разделов HASH используется прежде всего, чтобы гарантировать четкое распределение данных среди предопределенного числа разделов. С диапазоном или выделением разделов списка, Вы должны определить явно, в который раздел данное значение столбца или набор значений столбца должно быть сохранено, с выделением разделов hash MySQL заботится об этом для Вас, и Вы должны только определить значение столбца или выражение, основанное на значении столбца для хэширования и число разделов, на которые должна быть разделена разбитая на разделы таблица.

Чтобы выделять разделы таблицы, использующей выделение разделов HASH, необходимо конкатенировать к инструкции CREATE TABLE предложение PARTITION BY HASH (expr), где expr выражение, которое возвращает целое число. Это может быть просто имя столбца, чей тип является одним из целочисленных типов MySQL. Кроме того, Вы будете, наиболее вероятно, пользоваться предложением PARTITIONS num, где num неотрицательное целое число, представляющее число разделов, на которые таблица должна быть разделена.

Например, следующая инструкция создает таблицу, которая использует хэширование на столбце store_id и разделена на 4 раздела:

 

CREATE TABLE employees (id INT NOT NULL, fname VARCHAR(30),

lname VARCHAR(30),

hired DATE NOT NULL DEFAULT '1970‑01‑01',

separated DATE NOT NULL DEFAULT '9999‑12‑31',

job_code INT, store_id INT)

PARTITION BY HASH(store_id) PARTITIONS 4;

 

Если Вы не включаете предложение PARTITIONS, числом разделов по умолчанию будет 1. Использование ключевого слова PARTITIONS без числа после него приводит к синтаксической ошибке.

Вы можете также использовать выражение SQL, которое возвращает целое число для expr. Например, Вы могли бы выделять разделы, основываясь на годе, в котором служащий был нанят. Это может быть выполнено как показано здесь:

 

CREATE TABLE employees (id INT NOT NULL, fname VARCHAR(30),

lname VARCHAR(30),

hired DATE NOT NULL DEFAULT '1970‑01‑01',

separated DATE NOT NULL DEFAULT '9999‑12‑31',

job_code INT, store_id INT)

PARTITION BY HASH(YEAR(hired)) PARTITIONS 4;

 

Вы можете использовать любое функциональное или другое выражение для expr, которое является допустимым в MySQL, пока это возвращает непостоянное, непроизвольное целочисленное значение. Другими словами, это должно изменяться, но детерминировано. Однако, Вы должны иметь в виду, что это выражение оценено каждый раз, когда строка вставлена или модифицируется (или возможно удалена). Это означает, что очень сложные выражения могут вызывать проблемы эффективности, особенно при выполнении операций (типа пакетных вставок), которые воздействуют на очень многие строки в одно время.

Наиболее эффективная хэш‑функция та, которая функционирует на одиночном столбце таблицы, и чье значение увеличивается или уменьшается последовательно со значением столбца, поскольку это учитывает сокращение (pruning) на диапазонах разделов. То есть, выражение изменяется со значением столбца, на котором основано.

Например, если столбец date_col типа DATE, то выражение TO_DAYS(date_col) изменяется непосредственно со значением date_col, потому что для каждого изменения в значении date_col значение выражения изменяется непротиворечивым способом. Дисперсия выражения YEAR(date_col) относительно date_col не так пряма, как TO_DAYS(date_col), потому что не каждое возможное изменение в date_col производит эквивалентное изменение в YEAR(date_col). Даже в этом случае YEAR(date_col) хороший кандидат на хэш‑функцию, потому что это изменяется непосредственно с частью date_col, и не имеется никакого возможного изменения в date_col, которое производит непропорциональное изменение в YEAR(date_col).

Посредством контраста, предположите, что Вы имеете столбец int_col типа INT. Теперь рассмотрите выражение POW(5‑int_col,3)+6. Это было бы плохим выбором для хэш‑функции, потому что изменение в значении int_col не произведет пропорциональное изменение в значении выражения. Изменение значения int_col может производить очень разные изменения в значении выражения. Например, изменение int_col с 5 на 6 производит изменение в значении выражения ‑1, но при изменении значения int_col с 6 на 7 это будет уже ‑7.

Другими словами, граф значения столбца против значения выражения более близко следует за прямой строкой по уравнению y= n x, где n некоторая константа, отличная от нуля. Такое выражение лучше подходит для хэширования. Более нелинейный выражение произведет более неравное распределение данных среди разделов.

В теории сокращение также возможно для выражений включающих значение больше, чем одного столбца, но определение того, которые из таких выражений являются подходящими, может быть крайне трудным и отнимающим много времени. По этой причине использование выражений хэширования, включающих много столбцов, не особенно рекомендуется.

Когда используется PARTITION BY HASH, MySQL определяет который раздел num использовать, основываясь на модуле результата функции пользователя. Другими словами, для выражения expr раздел, в котором запись сохранена, представляет собой номер раздела N, где N =MOD(expr, num). Например, предположите, что таблица t1 определена следующим образом, чтобы имела 4 раздела:

 

CREATE TABLE t1 (col1 INT, col2 CHAR(5), col3 DATE)

PARTITION BY HASH(YEAR(col3)) PARTITIONS 4;

 

Если Вы вставляете в t1 запись с '2005‑09‑15' в col3, то раздел, в котором это будет сохранено, определен следующим образом:MOD(YEAR('2005‑09‑01'),4)=MOD(2005,4)=1

 

MySQL 5.1 также поддерживает вариант HASH partitioning известного как linear hashing (линейное хэширование), которое использует более сложный алгоритм для определения размещения новых строк, вставленных в разбитую на разделы таблицу.

Функция пользователя оценена каждый раз, когда запись вставлена или модифицируется. Это может также быть в зависимости от обстоятельств, когда записи удалены.

Обратите внимание: если таблица, которая будет разбита на разделы, имеет ключ UNIQUE, то любые столбцы, обеспеченные как параметры к HASH функции пользователя или на KEY column_list, должны быть частью того ключа. Исключительная ситуация: это ограничение не относится к таблицам, использующим NDBCluster.

 

LINEAR HASH Partitioning

 

MySQL также поддерживает линейное хэширование, которое отличается от регулярного хэширования тем, что линейное хэширование использует линейный алгоритм степени двух в то время, как регулярное хэширование использует модуль значения хэш‑функции.

Синтаксически единственное различие между выделением разделов линейного хэширования и регулярным хэшированием: добавление ключевого слова LINEAR в предложение PARTITION BY, как показано здесь:

 

CREATE TABLE employees (id INT NOT NULL, fname VARCHAR(30),

lname VARCHAR(30),

hired DATE NOT NULL DEFAULT '1970‑01‑01',

separated DATE NOT NULL DEFAULT '9999‑12‑31',

job_code INT, store_id INT)

PARTITION BY LINEAR HASH(YEAR(hired)) PARTITIONS 4;

 

Данный выражением expr раздел, в котором запись сохранена, когда линейное хэширование используется, представляет собой номер раздела N из числа разделов num, где N получен согласно следующему алгоритму:

 

Находят следующую степень 2 большую, чем num. Назовем это значение V, это может быть вычислено как: V =POWER(2, CEILING(LOG(2, num)))

 

Например, предположите, что num =13.

Тогда LOG(2,13)=3.7004397181411.

CEILING(3.7004397181411) 4, а V = POWER(2,4) = 3.

Берется N = F (column_list) (V – 1).

Пока N >= num:

Берется V =CEIL(V /2)

Берется N = N (V – 1)

 

Например, предположите, что таблица t1 применяет линейное выделение разделов, имеет 6 разделов и создана, используя эту инструкцию:

 

CREATE TABLE t1 (col1 INT, col2 CHAR(5), col3 DATE)

PARTITION BY LINEAR HASH(YEAR(col3)) PARTITIONS 6;

 

Теперь примите, что Вы хотите вставлять две записи в t1: у одной значение столбца col3 равно '2003‑04‑14', а у другой составляет '1998‑10‑19'. Номер раздела для первой из них определен следующим образом:

V = POWER(2, CEILING(LOG(2,7))) = 8

N = YEAR('2003‑04‑14') (8‑1) = 2003 7 = 3

(3 >= 6 FALSE: запись сохранена в разделе #3

)

 

Номер раздела, где сохранена вторая запись, вычислен как показано здесь:

V = 8

N = YEAR('1998‑10‑19') (8‑1) = 1998 7 = 6

(6 >= 6 TRUE: нужен дополнительный шаг

)

N = 6 CEILING(5 / 2) = 6 3 = 2

(2 >= 6 FALSE: запись сохранена в разделе #2

)

 

Преимущество в выделении разделов линейным хэшем в том, что добавление, удаление, объединение и разбиение разделов сделано намного быстрее, что может быть полезно, когда имеешь дело с таблицами, содержащими чрезвычайно большие количества данных. Недостаток в том, что менее вероятно, что данные будут равномерно распределены между разделами по сравнению с распределением, полученным используя регулярное выделение разделов hash partitioning.

 

KEY Partitioning

 

Выделение разделов ключом подобно выделению разделов хэшем за исключением того, что выделение разделов хэшем использует определяемое пользователем выражение, а хэш‑функция для выделения разделов ключом обеспечена MySQL. Здесь MySQL Cluster использует для этой цели MD5(), а для таблиц, использующих другие типы памяти, сервер применяет собственную внутреннюю хэш‑функцию, которая основана на том же самом алгоритме, что и PASSWORD().

Правила синтаксиса для CREATE TABLE … PARTITION BY KEY подобен правилам для создания таблицы, которая разбита на разделы хэшем. Главные различия состоят в том что:

 

KEY используется вместо HASH.

 

KEY берет только список из одного или большего количества имен столбцов. Начиная с MySQL 5.1.5, если таблица имеет первичный ключ, столбцы, по которым происходит выделение разделов, должны включать хотя бы его часть (или весь ключ).

Начиная с MySQL 5.1.6, KEY берет список из нуля или большего количества имен столбца. Если никакое имя столбца не определено как ключ выделения разделов, используется первичный ключ таблицы, если он имеется. Например, следующая инструкция CREATE TABLE допустима в MySQL 5.1.6 или позже:

 

CREATE TABLE k1 (id INT NOT NULL PRIMARY KEY, name VARCHAR(20))

PARTITION BY KEY() PARTITIONS 2;

 

Если не имеется никакого первичногоключа, но имеется уникальный ключ, то именно уникальный ключ используется для выделения разделов:

 

CREATE TABLE k1 (id INT NOT NULL, name VARCHAR(20),

UNIQUE KEY (id))

PARTITION BY KEY() PARTITIONS 2;

 

Однако, если уникальный столбец ключа не был определен как NOT NULL, то предыдущая инструкция будет терпеть неудачу.

В обоих из этих случаев ключом выделения разделов является столбец id, даже при том, что это не показывается в выводе SHOW CREATE TABLE или в столбце PARTITION_EXPRESSION таблицы INFORMATION_SCHEMA.PARTITIONS.

В отличие от случая с другими типами выделения разделов, столбцы, используемые для выделения разделов KEY, не ограничены значениями NULL или целым числом. Например, следующая инструкция CREATE TABLE допустима:

 

CREATE TABLE tm1 (s1 CHAR(32) PRIMARY KEY)

PARTITION BY KEY(s1) PARTITIONS 10;

 

Предшествующая инструкция не была бы допустима для любого другого типа выделения разделов. Примечание: в этом случае, простое использование PARTITION BY KEY() было бы также допустимо и имело бы тот же самый эффект. что и PARTITION BY KEY(s1), поскольку s1 является первичным ключом таблицы.

Обратите внимание: также начиная с MySQL 5.1.6, таблицы, использующие NDB Cluster неявно разбиты на разделы KEY, используя первичный ключ таблицы как ключ выделения разделов. Когда таблица кластера не имеет никакого явного первичного ключа, применяется скрытый первичный ключ, сгенерированный NDB для каждой таблицы кластера.

Важно: для таблицы с разделением по ключу, использующей любой тип памяти MySQL, кроме NDB Cluster, Вы не можете выполнять ALTER TABLE DROP PRIMARY KEY, так как это сгенерирует ошибку ERROR 1466 (HY000): Field in list of fields for partition function not found in table. Это не проблема для таблиц MySQL Cluster, которые разбиты на разделы KEY: в таких случаях, таблица реорганизована, используя скрытый первичный ключ для выделения разделов этой таблицы.

Также возможно выделить разделы таблицы линейным ключом. Имеется простой пример:

 

CREATE TABLE tk (col1 INT NOT NULL, col2 CHAR(5), col3 DATE)

PARTITION BY LINEAR KEY (col1) PARTITIONS 3;

 

Использование LINEAR имеет тот же самый эффект на KEY, как на выделении разделов HASH с номером раздела, получаемым использованием алгоритма степени двух, а не арифметикой модуля.

 



Поделиться:


Последнее изменение этой страницы: 2021-01-14; просмотров: 86; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.16.54.63 (0.23 с.)