Не хотите один прямо сейчас. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Не хотите один прямо сейчас.



 

Не терпится заполучить новый блестящий квантовый компьютер? Тогда у нас есть хорошая новость – уже сегодня вы можете купить один, если у вас в запасе хотя бы 10 миллионов долларов.

 

Компания D-Wave Systems, расположенная в Бернаби (Канада), – новичок, вторгшийся в область квантовых разработок. В число ее покупателей входят Google и NASA. Ее флагманская модель, запущенная в производство в январе 2017 года, известна под названием D-Wave 2000 Q и содержит решетку из мельчайших сверхпроводящих цепей из металла ниобия, каждая из которых составляет один кубит. В ней содержится вплоть до 2048 кубитов и используется 128 000 джозефсоновских соединений. Но имейте в виду – это не квантовый ноутбук. Этот инновационный черный ящик, вмещающий в себя суперкомпьютер, вместе с обслуживающей криогенной системой и интерфейсом занимает целую комнату. Как это ни удивительно, но он работает всего лишь на 25 киловаттах – малой доле от мощности, потребляемой самыми быстрыми суперкомпьютерами мира.

Полная 2000-кубитная производительность значительно превысит имеющуюся у конкурентов, и испытания показывают, что эта новая машина D-Wave Systems превосходит классическую по времени, занимаемому чистыми вычислениями, в 1000–10 000 раз. Но тесты ее предшественника, D-Wave 2X, оказались неубедительными, и были серьезные сомнения, действительно ли он опережает по производительности обычные компьютеры.

В августе 2015 года D-Wave Systems объявила, что ее D-Wave 2X почти в 15 раз быстрее, чем обычные ПК. Она показала компьютер на деле с помощью набора тестов, основанных на решении задач со случайными перестановками: к примеру, компьютеру нужно было собирать самую лучшую футбольную команду из списка игроков с разными способностями, каждый из которых работает лучше или хуже с тем или иным партнером. В сравнении со специализированными оптимизационными программами, работающими на обычном ПК, 2X находил ответ в 2–15 раз быстрее. Но критики говорят, что такое сравнение не объективно.

D-Wave 2X имеет только одно применение – выполнение алгоритма оптимизации, вычисляющего лучшее решение данной проблемы. Тем не менее этого достаточно для первых двух покупателей D-Wave Systems. Google использует его в машинном обучении, а корпорация Lockheed Martin с его помощью ищет ошибки в работе своего программного обеспечения для бортовых систем.

 

Сногсшибательные приложения для квантовых компьютеров

 

Квантовые компьютеры за счет своих способностей имеют большой потенциал и, очевидно, не испытывают дефицита в областях возможного применения. Вот их краткий список.

 

Супернадежное шифрование

 

Эта квантово-информационная технология уже вовсю применяется в коммуникациях. Различные небольшие системы квантовой криптографии для надежной передачи информации, в основном использующие в качестве кубитов поляризованные фотоны, были реализованы такими компаниями и лабораториями, как Toshiba, Hewlett Packard, IBM и Mitsubishi. В октябре 2007 года система квантовой криптографии, созданная Николасом Гисиным и его коллегами в Женевском университете, была использована для безопасной передачи голосов из центрального избирательного участка в офис подсчета во время федеральных выборов в Швейцарии. Подобная система голосования, разработанная научно-производственной фирмой ID Quantique, была использована для безопасной передачи данных во время проведения чемпионата мира по футболу в 2010 году в Южной Африке.

Расстояние, на которое квантовые состояния могут быть переданы по оптоволоконным кабелям, ограничено десятками километров из-за случайной диффузии. Один многообещающий способ обойти это подобен протоколам исправления ошибок для квантовых компьютеров и заключается в распространении информации по нескольким кубитам. Но это представляет угрозу безопасности, давая больше информации возможному перехватчику.

Альтернативой является передача по воздуху. Мировой рекорд полноценной телепортации одного кубита информации, установленный Антоном Цайлингером и его коллегами из Венского университета, составил 143 километра – расстояние между о. Пальма и Тенерифе, входящими в архипелаг Канарских островов. Это означает, что хрупкие квантовые состояния могут быть переданы на значительные расстояния по воздуху без искажений – и намекает на то, что всемирная надежная квантовая сеть, использующая спутники, реально возможна.

В августе 2016 года в Китае был запущен первый спутник квантовой связи для проверки технологии, которая однажды может стать частью защищенной от взлома сети. Она будет использовать фотоны для проверки распространения квантовых ключей.

 

 

Квантовые симуляции

 

Изначально мотивация Ричарда Фейнмана на размышления о квантовых компьютерах в 1981 году состояла в том, что они будут эффективней классических компьютеров в моделировании квантовых систем, в том числе собственных. Это звучит не слишком впечатляюще, но многие из самых досаждающих научных практических проблем, например вопрос того, что именно заставляет сверхпроводники проводить без сопротивления или магниты обладать магнитными свойствами, сложно, а зачастую даже невозможно решить с помощью классических компьютеров.

Теоретики квантовой информации уже разработали замысловатые алгоритмы для аппроксимации сложных квантовых систем, состоящих из множества частиц, предвосхищая появление квантовых компьютеров, обладающих достаточной мощностью для работы с ними. Прелесть в том, что такие симуляторы не будут ограничены существующей физикой: мы также можем использовать их, чтобы получить информацию о еще не изученных явлениях. Квантовые симуляции могут рассказать нам, где, скажем, лучше всего искать в природе частицы Майораны, находящиеся, например, в сложных многочастичных сверхпроводящих состояниях. Считается, что эти частицы являются античастицами сами себе и имеют свойства, которые могли бы сделать их идеальным инструментом для создания добротной квантовой памяти. Это открывает любопытную возможность – использовать квантовые компьютеры, чтобы предложить еще более мощные квантовые компьютеры.

 

Метрология

 

Выполнение точных измерений – потенциально одна из наиболее значимых сфер применения квантовых компьютеров. Эффекты классического шума при фиксации чувствительных измерений физических величин, например интервалов времени или расстояний, означают, что лучшая статистическая точность, которую мы можем достичь, растет с квадратным корнем числа битов, используемых для записи.

Между тем квантовая неопределенность определяется принципом неопределенности Гейзенберга и быстро улучшается с ростом числа проделанных измерений. Посредством кодирования расстояний и временных интервалов с использованием квантовой информации – измеряя их, например, поляризованными фотонами лазера – можно достичь намного большей точности.

Этот принцип уже применялся в гигантских интерферометрах, в которых используются отклонения лазерных пучков километровой длины для детектирования неуловимых гравитационных волн, предсказанных теорией относительности Эйнштейна, например детекторами LIGO в Ливингстоне (штат Луизиана) и Хэнфорде (штат Вашингтон). В этих случаях мы можем рассматривать гравитацию как шум, возмущающий кубиты, в роли которых выступают положение и импульс фотонов от лазера. Измеряя эти возмущения, мы можем оценить интенсивность волн.

 

 

Мы еще не приехали?

Ни один обзор квантовых компьютеров не будет полным без попытки ответить на вопрос стоимостью в 64 000 долларов (или даже гораздо большей): возможно ли, что мы увидим работающие квантовые компьютеры в наших домах, офисах и руках в ближайшее время? Ответ напрямую зависит от результатов поиска среды, способной кодировать и обрабатывать от 10 до 20 кубитов, которыми могут управлять имеющиеся технологии. Но достижение нескольких сотен кубитов, необходимое для опережения классических компьютеров, – во многом скорее техническая сложность. За пару десятилетий, с учетом прогресса в охлаждении и захвате, а также в сочетании со светом, от существующих технологий захваченных ионов и холодных атомов можно добиться необходимой стабильности в достаточно больших количествах для достижения действенных квантовых вычислений.

Первые крупномасштабные квантовые компьютеры, скорее всего, буквально такими и будут – крупномасштабными. Вложения в эту область существенно возросли за последние годы, и даже скептики сегодня говорят о крупномасштабных квантовых вычислениях как о неизбежном этапе развития, который, возможно, принесет свои плоды в следующие пять-десять лет. Эти системы, вероятно, будут управлять кубитами с помощью лазеров, и им потребуется сверхохлаждение, так что вряд ли они появятся в наших домах. Но если будущее большей части вычислений – это централизованные удаленные хранилища данных, возможно, эта необходимость не будет сильно мешать.

Когда появится что-то поменьше, следующей проблемой станет запутанность, являющаяся хрупкой драгоценностью и в более благоприятных условиях, поддерживать которую с ростом квантовой системы будет все сложнее и сложнее. Стало бы гораздо проще достичь прогресса в квантовых вычислениях, если бы наша убежденность в критической необходимости и центральном месте в таких вычислениях запутанных состояний оказалась ошибочной. Идея такой возможности появилась в 1998 году с разработкой «однокубитных» алгоритмов. Они могут решать широкий класс задач, включая разложение на множители по алгоритму Шора, и не требуют многих запутанных кубитов. Практическое осуществление такой технологии стало бы удивительно ловким приемом – однако исключительно важный алгоритм поиска по базе данных Гровера на ее основе реализовать невозможно.

Бытует мнение, что хрупкость квантовых систем не позволит нам осуществлять квантовые вычисления в таких крупномасштабных, шумных, теплых и сырых средах, в которых работаем мы, люди. Вопреки этому, надежду на их реализацию нам дают недавние свидетельства того, что живые системы, например фотосинтез у бактерии или аппарат магнитной навигации в сетчатке у птиц, используют некую простую обработку квантовой информации для повышения собственной эффективности (подробнее об этом см. в главе 6).

Если мы сможем раскрыть эти секреты, квантовый компьютер на каждом рабочем столе и на ладони каждой руки больше не покажется таким фантастическим.

 

 

Квантовые коммуникации

 

Сегодня криптографические системы находятся в довольно неустойчивом состоянии. Безопасность всех наших онлайн-закупок, банковских трансакций и аккаунтов основывается на шатком допущении, что эти конкретные математические операции трудновыполнимы. Наиболее известная из современных шифровальных систем называется алгоритмом RSA. Для шифрования данных она создает ключ из двух очень больших простых чисел. Они держатся в секрете, но их произведение – число длиной в тысячи двоичных цифр – известно всем. Данные могут быть зашифрованы с использованием этого открытого ключа, но расшифровать их можно, только зная его исходные числа. Безопасность RSA основывается на отсутствии известного простого способа найти два начальных числа. Существующие методы представляют собой почти бесконечные процессы, например подбор всех возможных вариантов по очереди.

 

Во всяком случае, мы на это надеемся. В настоящее время ни один классический компьютер не способен быстро решить эту задачу «в лоб», но все может измениться, особенно если крупномасштабные, по-настоящему квантовые компьютеры будут запущены в работу. Одним из способов дать новую жизнь нашей безопасности является использование квантовой криптографии. Она обещает возможность создания абсолютно случайных и непредсказуемых ключей, которые будут недоступны шпионам.

Квантовая криптография полностью зависит от законов, которые управляют такими частицами, как фотоны или электроны. Их свойства, включая, например, поляризацию, принимают несколько значений одновременно, сворачиваясь в четкую определенность, только когда эти частицы измеряют (см. рис. 5.3). Используйте эти свойства как основу для шифрования, и вы сделаете невозможной любую попытку подсмотреть ваш ключ: это изменит результат измерения, по сути разрушая пломбу, защищающую от воровства.

 

Рис. 5.3. Непревзойденная защита: как квантовые ключи будут обеспечивать безопасность передачи сообщений.

 

Имеющиеся системы используют протокол, при котором Алиса, передающая ключ, выпускает поляризованный фотон и проводит над ним измерения перед тем, как его отправить. Ее партнер по переписке Боб выбирает особый способ измерения этого состояния поляризации, а потом вместе с Алисой использует незашифрованный канал для сравнения способов измерений, которые они проделали. За счет этого они создают одну цифру закрытого ключа для использования в шифровании сообщений. Чтобы построить весь ключ, Алиса и Боб просто повторяют процесс.

Методика уже использовалась для защиты клинических данных, финансовых трансакций и результатов голосования на федеральных выборах в Швейцарии. Однако это довольно дорогая технология, так что проблема заключается в разработке дешевого оборудования квантовой коммуникации. Прототип микросхемы передатчика для квантовых коммуникаций уже был разработан в Бристольском университете, и однажды такие устройства могут поместить внутрь вашего Wi-Fi -роутера или мобильного телефона, чтобы ввести безопасные коммуникации в массы.

 

 

Интервью. Квантовый алгоритм для дешифровки онлайн-данных?

Питер Шор является профессором прикладной математики в Массачусетском технологическом институте. Его квантовый алгоритм мог бы взломать шифры, которые защищают наши онлайн-данные, – но выполнять его должен достаточно мощный квантовый компьютер. В этом интервью Шор объясняет, почему он разработал алгоритм для квантового компьютера, который мог бы разгадать шифрование наших онлайн-данных.

 

– Безопасность в Интернете основывается на том, что наши компьютеры не могут взломать его криптографические системы. Но квантовый алгоритм, который Вы разработали, как раз обладает этой возможностью. Почему Вы его создали?

– Моей мотивацией было увидеть, на что способен квантовый компьютер. Более ранний квантовый алгоритм работал, используя периодичность, – тенденцию некоторых числовых последовательностей регулярно повторяться. Это имеет отношение к разложению на множители или поиску среди них чисел поменьше, так что я считал, что квантовые компьютеры способны разлагать большие числа на множители. Поскольку криптосистемы в Интернете опираются на отсутствие у имеющихся компьютеров этой возможности, я представил себе достаточно мощный квантовый компьютер, способный взломать эти системы.

 

– Беспокоились ли Вы о последствиях, когда закончили «алгоритм Шора» в 1994 году?

– Я чувствовал себя превосходно, обнаружив нечто такое, о чем не знал никто другой. Если не я, то рано или поздно это совершил бы кто-то другой. В те времена квантовые компьютеры были лишь гипотезой, и я не задумывался о том, что они могут быть собраны. Мы будем в довольно безопасном положении еще пять или десять лет, а возможно, даже большее время.

 

– Квантовую криптографию невозможно взломать разложением на множители. Может ли она однажды заменить стандартные криптографические системы?

– Для коротких расстояний не слишком сложно построить квантовую сеть, распространяющую ключи шифрования данных. Для больших же понадобятся квантовые повторители примерно на каждые 50 километров оптоволоконной сети, поскольку на больших расстояниях сложно поддерживать квантовое состояние. Даже если они когда-нибудь станут дешевле, вложения все равно будут довольно большие.

 

– Насколько сложнее написать алгоритм для квантового компьютера?

– Намного сложнее. Квантовые компьютеры основываются на форме интерференции – по сути том же самом явлении, что и интерференция световых волн, но в более математическом исполнении. Вычислительным путям к правильному ответу необходимо интерферировать конструктивно, тогда как ведущие к неверному должны интерферировать деструктивно.

 

– Почему нужно писать именно квантовые алгоритмы, если у нас все еще нет соответствующего оборудования для их запуска?

– Чем больше применений вы сможете придумать для квантового компьютера, тем важнее будет его собрать. Например, вы можете создать более эффективный метод разработки лекарств с применением квантовых эффектов, предсказывающих химические реакции молекул. В настоящий момент фармацевтические компании используют обычные программы для симуляции этих эффектов, но у вас, возможно, получится лучше за счет способностей квантового компьютера.

 



Поделиться:


Последнее изменение этой страницы: 2021-01-14; просмотров: 81; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.118.93.123 (0.04 с.)