Классификация гидравлических машин 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Классификация гидравлических машин



Движущей силой, обеспечивающей перемещение жидкостей, является перепад давлений, создаваемый специальными гидравлическими машинами, которые можно разделить на четыре большие группы:

· динамические (центробежные, осевые, вихревые и др.), в которых механическая энергия вращающихся лопаток воздействует на незамкнутый объем жидкости, перемещаемый от входа в насос до выхода из него;

· объемные (поршневые, пластинчатые, шестеренные, винтовые и др.), в которых жидкость периодически всасывается и вытесняется из замкнутого объема твердыми телами;

· струйные (эжекторы, инжекторы), в которых движение потока жидкости создается струями газа (пара), воды;

· пневматические (эрлифты*, газлифты, пневматические подъемники (монтежю) и др.), движение жидкости в которых создается давлением газа.

К основным параметрам, характеризующим работу гидравлических машин относятся:

· подача – количество среды, перемещаемое машиной в единицу времени. Различают объемную подачу (Q, м3/с) и массовую подачу (G = ρ* Q, кг/с);

 

 

· напор (Н, м) – характеризует удельную энергию, сообщаемую насосом единице веса перекачиваемой среды. С помощью уравнения Бернулли (1.12) напор можно представить как высоту, на которую может быть поднят 1 кг перекачиваемой жидкости за счет энергии, сообщаемой ей насосом.

Таким образом полный напор насоса (рис. 2.4) определяется уравнением

где р1 и р2 – давление в сечениях всасывания и нагнетания; Н г - геометрическая высота подъема жидкости; h п - напор, затрачиваемый на создание скорости и на преодоление местных сопротивлений во всасывающей и нагнетательной линиях; рн, рвс – давления жидкости на выходе и входе насоса на расстоянии Н 0; w н, w вс – скорости на выходе и входе в насос.

Если w нw вс, а Н 0 мало, то уравнение (2.1) упрощается:

· мощность (N, кВт), потребляемая двигателями насоса,

N = Q*p*g*H/(1000*η),

где η = ηн, ηп, ηд – общий коэффициент полезного действия (КПД) насосной установки, представляющий собой произведение КПД насоса ηн, КПД передачи ηп и КПД двигателя ηд.

Динамические насосы

Центробежные насосы (рис. 2.5) характеризуются тем, что всасывание и нагнетание жидкости происходят под действием центробежной силы, возникающей при вращении заключенного в кожухе рабочего колеса, снабженного лопатками.

 

Центробежный насос состоит из рабочего колеса 1, снабженного лопатками 2 и насаженного на вал 6. При вращении рабочего колеса в жидкости, заполняющей кожух 3, возникают центробежные силы, отбрасывающие ее по межлопаточным каналам в спиральный кожух, а затем через патрубок 5 в нагнетательный трубопровод. В центральной части рабочего колеса 1 создается разрежение, способствующее подаче жидкости из всасывающего трубопровода через патрубок 4.

В зависимости от создаваемого напора центробежные насосы классифицируют на насосы:

· низкого давления (Н < 0,2 МПа);

· среднего давления (0,2 МПа < Н < 0,5 МПа);

· высокого давления (Н > 0,5 МПа).

По скорости вращения различают быстроходные, нормальные и тихоходные центробежные насосы. К преимуществам центробежных насосов относятся: равномерная и высокая подача жидкости; компактность; высокий коэффициент полезного действия (до 0,95); хорошая регулируемость; возможность перекачивания загрязненных сред.

Недостатками являются: менее высокий (по сравнению с объемными машинами) напор; необходимость заливки перед пуском; сложность изготовления рабочих колес; зависимость между создаваемым напором и подачей.

Осевые насосы (рис. 2.6) используются для перемещения больших количеств жидкости при низких давлениях.

Основным рабочим элементом осевых насосов является корпус 1 с коаксиально установленным рабочим колесом, состоя

 

щим из нескольких винтовых лопаток 4, насаженных на вал 3. При его вращении создается давление лопаток на жидкость, и ока перемещается в осевом направлении. Для уменьшения вихреобразования, в ряде случаев за рабочим колесом устанавливается раскручивающее устройство, представляющее собой радиальные лопатки 2, превращающие энергию вращения жидкости в осевой напор. Коэффициент полезного действия осевых на­сосов составляет 0,8... 0,9.

Преимуществами осевых насосов являются простота, возможность перекачивания загрязненных жидкостей, высокая производительность. Однако создаваемый ими напор относительно небольшой – 0,1...0,2 МПа.

 

 

В случае перекачивания жидкостей, утечка которых недопусти­ма вследствие их химической агрессивности, токсичности или взрывопожароопасности, применяют герметические центробежные насосы (рис. 2.7).

Полная герметизация рабочего объема в них достигается путем установки рабочего колеса 1 непосредственно на валу ротора 2 электродвигателя. Обмотка статора 3 электродвигателя герметически отделяется от обмоток ротора 2 цилиндрической оболочкой 4 из немагнитной нержавеющей стали, через которую проходят силовые линии магнитного поля. Заключенный в оболочку ротор электродвигателя и подшипники, покрытые кислотостойкой изоляцией, погружены в перекачиваемую жидкость, которая служит смазкой для подшипников и охлаждающей средой для ротора.

Герметичные насосы отличаются компактностью и безопасностью эксплуатации, однако КПД их несколько ниже, чему обыч­ных центробежных насосов.

Подбор насосов

В практической деятельности при выборе технологического оборудования для конкретного процесса, часто возникает задача подбора насосного оборудования. При этом основными параметрами, определяющими выбор конкретного насоса, являются его подача и напор.

Количество перекачиваемой жидкости определяется из технологических требований, когда известно, сколько продукта должно быть перемещено из одного аппарата с внутренним давлением Р1 в другой аппарат с давлением Р2. Параметрами, определяющими тип выбираемого насоса, будут являться также физические свойства перекачиваемой среды, ее температура и агрессивность, учитываемые при назначении конструкционного материала.

При выборе насоса с требуемым напором следует также учитывать гидравлическое сопротивление системы (включающей расширения, сужения, повороты, запорную арматуру), по которой перекачивается жидкость.

После определения величин подачи и напора, а также типа насоса и его исполнения осуществляют его подбор по каталогам, используя карты рабочих полей, на которых нанесены области применения насосов различных типоразмеров (рис. 2.8). Если точка А, соответствующая требуемым значением подачи и напора, попадает в область его применения, соответствующий насос может быть использован в заданном процессе. Если же рабочая точка А' не лежит на рабочей характеристике серийного выпускаемого насоса, выбирают ближайший насос с большими типоразмерами, который либо используют в выпускаемом виде, либо осуществляется операция подрезки рабочего колеса, изменяющая его эксплуатационные характеристики.                                                                                                                     

Насосы объемного типа

Поршневые насосы применяют при относительно небольших подачах и высоких давлениях (до 100 МПа) для перекачивания высоковязких пожаро- и взрывоопасных жидкостей.

Простейшая схема горизонтального поршневого насоса приведена на рис. 2.9. Он состоит из поршня 2, совершающего возвратно-поступательное движение в цилиндре 1, внутри которого установлены всасывающий 5 и нагнетательный 6 клапаны. Поршень 2 приводится в действие кривошипно-шатунным механизмом 3.

При движении поршня 2 влево в цилиндре 1 создается разрежение, в результате которого клапан 5 открывается, клапан 6 закрывается, и жидкость из всасывающего трубопровода закачивается в цилиндр 1. Процесс всасывания происходит до тех пор, пока поршень не достигнет крайнего правого положения. Затем поршень начинает движение справа налево, и в цилиндре 1 возникает избыточное давление, закрывающее клапан 5 и открывающее клапан 6, через который жидкость под давлением выталкивается в нагнетательный трубопровод. Процесс завершается при достижении поршнем крайнего левого положения. Затем цикл повторяется.

В зависимости от конструкции поршня различают поршневые насосы (см. рис. 2.9) (поршни в виде дисков, уплотняемые металлическими разрезными уплотнительными кольцами 4 или эластичными манжетами), а также плунжерные насосы (рис. 2.10) (рабочий орган – плунжерный поршень 2, установленный в корпусе 1).

Преимуществами поршневых насосов является: возможность получения высоких напоров при малой подаче; незначительная зависимость подачи от напора; способность самовсасывания. Плунжерные насосы благодаря простоте регулирования движения поршня могут использоваться для перекачивания загрязненных и вязких жидкостей.

К недостаткам можно отнести: меньшую, по сравнению с центробежными насосами, подачу; некоторую неравномерность подачи; большие габаритные размеры и сложность конструкции.

Для выравнивания подачи поршневых и плунжерных насосов существует несколько способов:

 

· применение многопоршневых машин с общей приводной частью и общими магистральными трубопроводами;

· использование воздушных колпаков на всасывающей и напорной линиях для демпфирования (сглаживания) потоков жидкости.

Теоретическая средняя подача насоса простого действия (Q, м3/с) составляет

Q = F*Sn,

где F – площадь поперечного сечения поршня (или плунжера), мг; S – ход поршня, м; n – частота вращения вала, об/с.

Действительная подача

где ην = 0,8... 0,9 – коэффициент подачи; i – кратность подачи.

Большую группу насосов объемного типа составляют роторные насосы, к которым относятся шестеренные (зубчатые), пластинчатые (шиберные), а также винтовые.

Шестеренный насос (рис. 2.11) состоит из двух зубчатых колес 1 и 3, находящихся в зацеплении и размещенных с малым зазором корпусе 4, одно из которых является ведущим, другое – ведомым. При вращении колес жидкость из полости всасывания 5 перемещается в напорную полость 2.

Подача шестеренного насоса, состоящего из двух колес раз­личных размеров, определяется как

где f – площадь поперечного сечения впадины между зубьями, м2; l – длина зуба колеса, м; z 1 и z 2 – число зубьев колес; n1 и n2 – частота вращения, об/мин; η0 – объемный коэффициент насоса.

Если колеса одинаковы, то

Шестеренные насосы применяют для перекачивания вязких жидкостей при невысоких подачах и высоких давлениях (до 15 МПа).

Пластинчатый насос (рис. 2.12) состоит из корпуса 1 с ротором в виде установленного в нем с эксцентриситетом цилиндра 3, в котором выполнены радиальные прорези. В этих прорезях с возможностью свободного перемещения установлены пластины 4, которые при вращении, в результате действия на них центробежных сил плотно прижимаются к стенкам корпуса, образуя камеры, в которых жидкость от всасывающей магистрали 5 перемещается к нагнетательной магистрали 2. При этом объем камеры, формируемой у всасывающего патрубка, увеличивается, создавая разрежение и всасывание, а у нагнетательного патрубка уменьшается, увеличивая давление.

Пластинчатые насосы применяют для перемещения чистых жидкостей при умеренных подаче и

напоре.

Винтовой насос (рис. 2.13), как правило, состоит из одного ведущего винта (червяка) 1 и находящихся в зацеплении с ним нескольких ведомых винтов (червяков) 2, заключенных в корпусе 3 с патру6ками всасывания 4 и нагнетания 5. Направления винтовых нарезок ведомых и ведущего винтов противоположны.

При вращении винтов всасываемая жидкость заполняет впадины винтовых нарезок и перемещается по направлению вращения ведущего винта.

Ведомые винты при этом играют роль герметизирующих устройств, позволяющих передавливать жидкость из патру6ка всасывания в патрубок подачи.

Винтовые насосы используются для перекачивания высоковязких жидкостей, топлив, нефтепродуктов и т. п. Подача этих насосов достигает 300 м3/ч, а напор – 20 МПа.

Давление, обеспечиваемое винтовыми насосами, зависит в первую очередь от числа шагов винтовой линии.

Подачу (Q, м3/с) можно определить по формуле

где η0 = 0,7... 0,95; n – частота вращения ведущего винта, об/мин; d – диаметр червяка, м.



Поделиться:


Последнее изменение этой страницы: 2020-12-09; просмотров: 228; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.126.80 (0.027 с.)