Трансформатор - устройство и принцип работы 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Трансформатор - устройство и принцип работы



Трансформатор

Трансформатор - устройство и принцип работы

Трансформаторстатический электромагнитный аппарат для преобразования переменного тока одного напряжения в переменный ток другого напряжения, той же частоты. Трансформаторы применяют в электрических цепях при передаче и распределении электрической энергии, а также в сварочных, нагревательных, выпрямительных электроустановках и многом другом.

Трансформаторы различают по числу фаз, числу обмоток, способу охлаждения. В основном используются силовые трансформаторы, предназначенные для повышения или понижения напряжения в электрических цепях.

Рис. 1.

 

В большинстве случаев (Рис. 1) трансформатор состоит из замкнутого магнитопровода (сердечника) с расположенными на нем двумя катушками (обмотками) электрически не связанных между собой. Магнитопровод изготавливают из ферромагнитного материала, а обмотки мотают медным изолированным проводом и размещают на магнитопроводе.

Одна обмотка подключается к источнику переменного тока и называется первичной (I), с другой обмотки снимается напряжение для питания нагрузки и обмотка называется вторичной (II). Схематичное устройство простого трансформатора с двумя обмотками показано на рисунке.

Принцип работы трансформатора.

Принцип работы трансформатора основан на явлении электромагнитной индукции.

В 1831 году мир впервые узнал о понятии электромагнитной индукции. Именно тогда Майкл Фарадей обнаружил это явление, ставшее в итоге важнейшим открытием в электродинамике. Закон гласит:

Для любого контура индуцированная электродвижущая сила (ЭДС) равна скорости изменения магнитного потока, проходящего через этот контур, взятой со знаком минус.

Таким образом, в проводящем контуре, находящемся в изменяющемся магнитном поле наводится ЭДС и, следовательно, возникает электрический ток такого направления, чтобы созданное этим током магнитное поле было направлено навстречу создающему его внешнему полю

То есть, если в переменном магнитном поле находится сверхпроводник, то переменное внешнее поле выталкивается из сверхпроводника магнитным полам индуцированного им тока и внутри сверхпроводника суммарное поле равно нулю.

Направление магнитного поля от протекающего по проводнику определяется по «правилу буравчика»

На рис. 4.1. показано, как определяется направление магнитного поля при протекании тока по проводнику и направление магнитного поля при протекании тока по круговому контуру.

Рис. 4.1.

 

Режимы работы трансформатора

Режим холостого хода (ХХ)

Режим холостого хода трансформатора производится при подключении первичной обмотки в сеть. Вторичная обмотка, при этом, на нагрузку не включается. Имеем напряжение U1на первичной обмотке, и напряжение U2 на вторичной. Ток I1будет иметь некоторое значение, в отличие отI2 который будет равен нулю.

Схема подключения для данного опыта представлена на рис. 7:

Рис. 7

Для лучшего понимания процесса перечертим трансформатор (см. рис.8) в ином виде:

Рис. 8

Первичная обмотка с числом витков W1 подключена в сеть стандартного напряжения U1. Если обмотка имеет сопротивление не равное бесконечности, то по ней потечет ток I1. Из курса физики знаем, что всякая обмотка, через которую протекает ток, создает магнитное поле. В данном случае переменное поле, то есть интенсивность его меняется во времени и направление поля тоже меняется во времени. Магнитный поток Ф зависит от индуктивности катушки L1 и силы тока в ней, в данном случае I1. Формула: Ф = L1·I1. Сердечник трансформатора, на котором намотаны катушки, обычно делаются из тонких стальных листов, для уменьшения потерь Однако потери все равно есть, из-за, так называемого, рассеивания. Данный магнитный поток будет одинаковым, как в режиме холостого хода, так и в режиме нагрузки, то есть, когда на вторую обмотку подключен потребитель и по ней потечет ток.

Вышеназванный переменный магнитный поток Ф будет создавать электродвижущую силу как во вторичной обмотке e2, так и в первичнойe1. Во вторичной обмотке нагрузки нет (потребитель не подключен), то нет и тока I2. То есть он равен нулю. А напряжение U2 есть, какое оно мы рассмотрим позже.

В первичной обмотке цепь замкнута и ЕДС e1 создает ток противодействующий основному току I1 и собственный магнитный поток, который противодействует потоку Ф. В связи с этим, ток холостого хода никогда не бывает большим. Для крупных трансформаторов это в пределах 5%, максимум 10% от номинального. Для трансформаторов малой мощности вне ответственных изделиях, например зарядных устройствах телефонов, этот ток может доходить до 30 и более процентов от номинального.

Напряжение U1 есть сумма от падений напряжений на активном сопротивлении UА1, а так же от создания магнитного потока Ф, которое обозначим UL1 и падения напряжения от создания потока рассеивания ULS1.

Значит формула, согласно закону Кирхгофа будет иметь вид: U1=UА1+UL1+ULS1. В свою очередь UА1=I1·R1. Где R1 – активное сопротивление на первичной обмотке. Витки обмотки, как правило, медные, по этой причине сопротивление R1 имеет очень малое значение.

Если трансформатор собран для ответственной работы, то и поток рассеивания так же будет мал. ULS1=XLS·I1=2πfLs1·I1, где f–промышленная частота 50 герц, а Ls1 – поток рассеивания. И тем и другим слагаемым можно пренебречь по сравнению с потерями на перемагничивание стали сердечника трансформатора. В этом случае мы допускаем, что все напряжение тратится на создание потока Ф, а он зависит от тока в проводнике, в данном случае I1 и индуктивности L. Но так как магнитный поток в первичной и вторичной обмотке одинаков, то напряжение U1 и U2 зависят только от количества витков в первичной и вторичной обмотке. Коэффициент зависимости этих напряжений и называется коэффициентом трансформации k = U1/U2= e1/e2 = W1/W2.

Напомним, что противодействие основному потоку возникает только при его изменении, то сеть при переменном потоке (иными словами при переменном токе в цепи). Если обмотку трансформатора включить в цепь постоянного тока, то она наверняка перегорит, поскольку противодействие будет составлять только активное сопротивление, а оно очень мало.

Если нам известен ток первичной обмотки I1, напряжение на первичной обмотке U1, напряжение на вторичной обмотке U2, потребляемая трансформатором полная мощность S1 = I1U1 и измеренная с помощью ваттметра активная мощность Р1, то мы можем вычислить следующие параметры:

1. Коэффициент трансформации k = U1/U2

2. Процентное значение тока холостого хода: i = (Ixx/IH)  100, где Ixx – ток холостого хода в данном случае I1, IH – ток при номинальной нагрузке.

3. Активное сопротивление первичной обмотки R1 = P/Ixx2 ,

поскольку Р= UR Ixx= R1 Ixx Ixx= R1 Ixx2

4. Полное сопротивление первичной обмотки Z1 = U1/Ixx

5. Индуктивное сопротивление первичной обмотки Х21L = (Z21 R21)

6. Коэффициент мощности трансформатора cos φ = P1A/I1U1

Поскольку пункт 2 невозможно вычислить без проверки трансформатора при нагрузке, то и последовательность проверок, как правило, следующее: под нагрузкой, при коротком замыкании и при режиме холостого хода.

На практике режим холостого хода используется для определения коэффициента трансформации k и потерь в трансформаторе на гистерезис и вихревые токи, на так называемые «потери в стали».

Опыт короткого замыкания

Режимом короткого замыкания трансформатора называется такой режим, когда выводы вторичной обмотки замкнуты токопроводом с сопротивлением, равным нулю (ZH = 0). Короткое замыкание трансформатора в условиях эксплуатации создает аварийный режим, так как вторичный ток, а следовательно, и первичный увеличиваются в несколько десятков раз по сравнению с номинальным. Поэтому в цепях с трансформаторами предусматривают защиту, которая при коротком замыкании автоматически отключает трансформатор.

В лабораторных условиях можно провести испытательное короткое замыкание трансформатора, при котором накоротко замыкают зажимы вторичной обмотки, а к первичной подводят такое напряжение Uк, при котором ток в первичной и/или вторичной обмотке не превышает номинального значения (Iк < I1ном). При этом выраженное в процентах напряжение Uк, при Iк = I1ном обозначают uK и называют напряжением короткого замыкания трансформатора. Это характеристика трансформатора, указываемая в паспорте.

Таким образом (%):

где U1ном — номинальное первичное напряжение.

Напряжение короткого замыкания зависит от высшего напряжения обмоток трансформатора. Так, например, при высшем напряжении 6—10 кВ uK = 5,5%, при 35 кВ uK = 6,5÷7,5%, при 110 кВ uK = 10,5% и т. д. Как видно, с повышением номинального высшего напряжения увеличивается напряжение короткого замыкания трансформатора.

При напряжении Uк составляющем 5—10% от номинального первичного напряжения, намагничивающий ток (ток холостого хода) уменьшается в 10—20 раз или еще более значительно. Поэтому в режиме короткого замыкания считают, что

Основной магнитный поток Ф также уменьшается в 10—20 раз, и потоки рассеяния обмоток становятся соизмеримыми с основным потоком.

Так как при коротком замыкании вторичной обмотки трансформатора напряжение на ее зажимах U2 = 0, уравнение э. д. с. для нее принимает вид

а уравнение напряжения для трансформатора записывается как

Этому уравнению соответствует схема замещения трансформатора, изображенная на рис. 8.

Векторная диаграмма трансформатора при коротком замыкании соответствующая уравнению и схеме рис. 8, показана на рис. 9. Напряжение короткого замыкания имеет активную и реактивную составляющие. Угол φK между векторами этих напряжений и тока зависит от соотношения между активной и реактивной индуктивной составляющими сопротивления трансформатора.

Рис. 8. Схема замещения трансформатора при коротком замыкании

Рис. 9. Векторная диаграмма трансформатора при коротком замыкании

У трансформаторов с номинальной мощностью 5—50 кВА XK/RK = 1 ÷ 2; с номинальной мощностью 6300 кВА и более XK/RK = 10 и более. Поэтому считают, что у трансформаторов большой мощности UK = Uкр, а полное сопротивление ZК = Хк.

Этот опыт, как и опыт холостого хода, проводят для определения параметров трансформатора. Собирают схему (рис. 10), в которой вторичная обмотка замкнута накоротко металлической перемычкой или проводником с сопротивлением, близким к нулю. К первичной обмотке подводится такое напряжение Uк, при котором ток в ней равен номинальному значению I1ном.

 

 

Рис. 10. Схема опыта короткого замыкания трансформатора

По данным измерений определяют следующие параметры трансформатора.

Трансформатор тока

Трансформатором тока (ТТ) называется трансформатор, в котором при нормальных условиях применения вторичный ток практически пропорционален первичному току и при правильном включении сдвинут относительно его на угол, близкий к нулю.

Первичная обмотка трансформатора тока включена в цепь последовательно (в рассечку токопровода), а вторичная обмотка замыкается на некоторую нагрузку (измерительные приборы и реле), обеспечивая прохождение по ней тока, пропорционального току первичной обмотке.

В трансформаторах тока высокого напряжения первичная обмотка изолирована от вторичной обмотки (от земли) на полное рабочее напряжение. Один конец вторичной обмотки обычно заземляется. Поэтому она имеет потенциал, близкий к потенциалу земли.

Трансформаторы тока по своему назначению разделяются на трансформаторы тока для измерений и трансформаторы тока для защиты. В некоторых случаях эти функции совмещают в одном трансформаторе тока.

Трансформаторы тока для измерений предназначаются для передачи измерительной информации измерительным приборам. Они устанавливаются в цепях высокого напряжения или в цепях с большим током, то есть в цепях, в которых не возможно непосредственное включение измерительных приборов. Ко вторичной обмотке ТТ для измерений подключаются амперметры, токовые обмотки ваттметров, счетчиков и аналогичных приборов. Таким образом, трансформатор тока для измерений обеспечивает:
1) преобразование переменного тока любого значения в переменный ток, приемлемый по значению для непосредственного измерения с помощью стандартных измерительных приборов;
2) изолирование измерительных приборов, к которым имеет доступ обслуживающий персонал, от цепи высокого напряжения.

Трансформаторы тока для защиты предназначаются для передачи измерительной информации в устройства защиты и управления. Соответственно этому трансформатор тока для защиты обеспечивает:
1) преобразование переменного тока любого значения в переменный ток, приемлемый по значению для питания устройств релейной защиты;
2) изолирование реле, к которым имеет доступ обслуживающий персонал, от цепи высокого напряжения.

Применение трансформаторов тока в установках высокого напряжения является необходимым даже в тех случаях, когда уменьшение тока для измерительных приборов или реле не требуется.

Устройство трансформатора.

Типы магнитопроводов.

Магнитопроводы трансформаторов разделяются на шихтованные (штампованные) и ленточные (витые), изготавливаемые из листовых материалов и прессованные из ферритов.

Шихтованные магнитопроводы набираются из плоских штампованных пластин соответствующей формы. Причем пластины могут быть изготовлены практически из любых, даже очень хрупких материалов, что является достоинством этих магнитопроводов.

Ленточные магнитопроводы изготавливаются из тонкой ленты, намотанной в виде спирали, витки которой прочно соединены между собой. Достоинством ленточных магнитопроводов является полное использование свойств магнитных материалов, что позволяет уменьшить массу, размеры и стоимость трансформатора.

В зависимости от типа магнитопровода трансформаторы подразделяются на стрежневые, броневые и тороидальные. При этом каждый из этих типов может быть и стрежневым и ленточным.

Стержневые трансформаторы

В магнитопроводах стержневого типа обмотки располагается на двух стержнях (стержнем называют часть магнитопровода, на которой размещают обмотки). Это усложняет конструкцию трансформатора, но уменьшает толщину намотки, что способствует снижению индуктивности рассеяния, расхода проволоки и увеличивает поверхность охлаждения.

Стержневые магнитопроводы используют в выходных трансформаторах с малым уровнем помех, так как они малочувствительны к воздействию внешних магнитных полей низкой частоты. Это объясняется тем, что под влиянием внешнего магнитного поля в обеих катушках индуцируются напряжения, противоположные по фазе, которые при равенстве витков обмоток компенсируют друг друга. Как правило, стержневыми выполняются трансформаторы большой и средней мощности.

Броневые.

В магнитопроводе броневого типа обмотка располагается на центральном стержне. Это упрощает конструкцию трансформатора, позволяет получить более полное использование окна обмоткой, а также создает некоторую механическую защиту обмотки. Поэтому такие магнитопроводы получили наибольшее применение.

Некоторым недостатком броневых магнитопроводов является их повышенная чувствительность к воздействию магнитных полей низкой частоты, что делает их малопригодными к использованию в каче-

стве выходных трансформаторов с малым уровнем помех. Чаще всего броневыми выполняются трансформаторы средней мощности и микротрансформаторы.

Тороидальные.

Тороидальные или кольцевые трансформаторы позволяют полнее использовать магнитные свойства материала, имеют малые потоки рассеивания и создают очень слабое внешнее магнитное поле, что особенно важно в высокочастотных и импульсных трансформаторах. Но из-за сложности изготовления обмоток не получили широкого применения. Чаще всего их делают из феррита.Для уменьшения потерь на вихревые токи шихтованные магнитопроводы набираются из штампованных пластин толщиной 0,35 – 0,5 мм, которые с одной стороны покрывают слоем лака толщиной 0,01 мм или оксидной пленкой.

Лента для ленточных магнитопроводов имеет толщину от нескольких сотых до 0,35 мм и также покрывается электроизолирующей и одновременно склеивающейся суспензией или оксидной пленкой. И чем тоньше слой изоляции, тем плотнее происходит заполнение сечения магнитопровода магнитным материалом, тем меньше габаритные размеры трансформатора.

За последнее время наряду с рассмотренными «традиционными» типами магнитопроводов находят применение новые формы, к числу которых следует отнести магнитопроводы «кабельного» типа, «обращенный тор», катушечный и др.

 

Трансформатор

Трансформатор - устройство и принцип работы

Трансформаторстатический электромагнитный аппарат для преобразования переменного тока одного напряжения в переменный ток другого напряжения, той же частоты. Трансформаторы применяют в электрических цепях при передаче и распределении электрической энергии, а также в сварочных, нагревательных, выпрямительных электроустановках и многом другом.

Трансформаторы различают по числу фаз, числу обмоток, способу охлаждения. В основном используются силовые трансформаторы, предназначенные для повышения или понижения напряжения в электрических цепях.

Рис. 1.

 

В большинстве случаев (Рис. 1) трансформатор состоит из замкнутого магнитопровода (сердечника) с расположенными на нем двумя катушками (обмотками) электрически не связанных между собой. Магнитопровод изготавливают из ферромагнитного материала, а обмотки мотают медным изолированным проводом и размещают на магнитопроводе.

Одна обмотка подключается к источнику переменного тока и называется первичной (I), с другой обмотки снимается напряжение для питания нагрузки и обмотка называется вторичной (II). Схематичное устройство простого трансформатора с двумя обмотками показано на рисунке.



Поделиться:


Последнее изменение этой страницы: 2020-12-09; просмотров: 168; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.224.63.87 (0.039 с.)