Уравнения генераторов постоянного тока 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Уравнения генераторов постоянного тока



Основные соотношения, характеризующие работу машины в качестве генератора, можно представить в виде приведенных ниже уравнений. Эти уравнения справедливы для всех генераторов независимо от способа их возбуждения.

Уравнение равновесия напряжения. Напряжение на выводах генератора U всегда меньше наводимой в обмотке якоря ЭДС Е на значение падения напряжения:

U = E - IaΣra - ΔUщ. (1)

Падение напряжения в цепи якоря состоит из двух составляющих: IaΣra - падение напряжения в обмотках и ΔUщ. - падение напряжения в щеточном контакте. Сопротивление Σra включает в себя сопротивления обмотки якоря и всех последовательно соединенных с ней обмоток. В общем случае

Σra = ra + r д .+ rс + r к, (2)

где ra, r д, rс, r к - сопротивления обмоток: якоря, дополнительных полюсов, последовательной и компенсационной.

В зависимости от конкретной схемы генератора часть сопротивлений в (2) будет отсутствовать.

Для приближенных расчетов уравнение (1) можно упростить:

U = E - Ia Ra, (3)

где Ra=Σra+rщ. Переходное сопротивление щеточного контакта rщ приближенно принимается постоянным и равным

rщ = ΔUщ/ Ia, ном.  

Ток якоря генератора Ia обусловлен ЭДС E и всегда имеет с ней одинаковое направление:

Ia = (E - U)/Ra. (4)

Уравнение баланса мощностей. Это уравнение получим, если правую и левую части (1) умножим на ток Ia:

UIa = EIa. - I2aΣra - ΔUщIa.  

Произведение E Ia=Pэм называется электромагнитной мощностью и представляет собой суммарную электрическую мощность, которая получается в результате преобразования механической мощности. Часть этой мощности расходуется в цепи якоря на электрические потери в обмотках (I2aΣra= Pэ,а) и в переходном сопротивлении щеточного контакта (ΔUщIa= Pэ,щ).

Остальная часть мощности, равная произведению UIa, является отдаваемой мощностью генератора. В генераторах независимого возбуждения эта мощность поступает во внешнюю сеть и представляет собой полезную мощность генератора P2:

P2 = UIa. (5)

В генераторах параллельного и смешанного возбуждения полезная мощность P2, отдаваемая в сеть, меньше на значение мощности, затрачиваемой на возбуждение:

P2 = UIa - Pв. (6)

К генератору от двигателя, приводящего во вращение его якорь,подводится механическая мощность P1. Большая часть этой мощности преобразуется в электромагнитную Pэм, а другая ее часть расходуется в генераторе на покрытие механических потерь Pмх (трение в подшипниках, вентиляцию), магнитных потерь в стали якоря Pм и добавочных потерь Pд:

           P1 = Pэм + Pмх.+ Pм + Pд. (7)

Для генераторов независимого возбуждения мощность, затрачиваемая на возбуждение, поступает от постороннего источника, поэтому в левой части (7) следует принимать

P1 = Pэм + Pмх.+ Pм + Pд + Pв. (8)

Отношение P2/P1 представляет собой КПД генератора.

Рассмотренное преобразование мощности в генераторах постоянного тока для наглядности можно представить в виде энергетической диаграммы (рис. 2). Эта диаграмма построена для генератора параллельного возбуждения.

Уравнение равновесия моментов. Поделив правую и левую части уравнения (7) на угловую скорость якоря Ω=2πn/60, получим уравнение момента:

P1/Ω = Pэм/Ω + (Pмх.+ Pм + Pд)/Ω, (8)

или

М1 = М + (Pмх.+ Pм + Pд)/Ω.  

Электромагнитный момент М в генераторе направлен против вращения и равен М=cMIaФ. При увеличении тока Ia возрастает электромагнитный момент и, следовательно, момент и мощность, поступаемая от приводного двигателя.

 

Генераторы переменного тока

Переменный ток – движущая сила многих производств и транспорта, в частности, автомобилей. Существуют как небольшие модели величиной с кулак, так и гигантские устройства несколько метров в высоту.

Как бы не был устроен генератор, в основе его действия лежит процесс электромагнитной индукции – появление в замкнутом контуре электрического тока под воздействием измененного магнитного потока. Принцип устройства генератора переменного тока приведен на рисунке 3.1. Индуцированный ток возникает в тех сторонах витка, которые пересекаются силовыми линиями поля магнита.

В зависимости от количества обмоток на статоре генератора можно получить несколько отдельных фаз синусоидального напряжения. Если количество витков обмоток одинаково, то амплитуды синусоидальных напряжений также будут одинаковыми, но фазы напряжений будут отличаться.

Генератор однофазного тока

 

 

Генератор двухфазного тока

 

 

Генератор трехфазного тока

Трехфазная цепь состоит из трех основных элементов: трехфазного генератора, в котором механическая энергия преобразуется в электрическую с трехфазной системой ЭДС; линии передачи со всем необходимым оборудованием; приемников (потребителей), которые могут быть как трехфазными (например, трехфазные асинхронные двигатели), так и однофазными (например, лампы накаливания).

Трехфазный генератор представляет собой синхронную машину нескольких типов: турбогенератор и гидрогенератор, дизельгенераторы и др.. Модель трехфазного генератора схематически изображена на рис. 3.1.

Рис. 3.1

 

На статоре 1 генератора размещается обмотка 2, состоящая из трех частей или, как их принято называть, фаз. Обмотки фаз располагаются на статоре таким образом, чтобы их магнитные оси были сдвинуты в пространстве относительно друг друга на угол 2π/3, т.е. на 120°. На рис. 3.1 каждая фаза обмотки статора условно показана состоящей из одного витка. Начала фаз обозначены буквами A, B и C, а концы – X, Y, Z. Ротор 3 представляет собой электромагнит, возбуждаемый постоянным током обмотки возбуждения 4, расположенной на роторе.

При вращении ротора турбиной с равномерной скоростью в обмотках фаз статора индуктируются периодически изменяющиеся синусоидальные ЭДС одинаковой частоты и амплитуды, но отличающиеся друг от друга по фазе на 120° вследствие их пространственного смещения.

На рис. 3.1. б. приведен график ЭДС, вырабатываемые трехфазным генератором

 

На схеме обмотку (или фазу) источника питания изображают как показано на рис. 3.2.

За условное положительное направление ЭДС в каждой фазе принимают направление от конца к началу. Обычно индуктированные в обмотках статора ЭДС имеют одинаковые амплитуды и сдвинуты по фазе относительно друг друга на один и тот же угол 120°. Такая система ЭДС называется симметричной.

Трехфазная симметричная система ЭДС может изображаться графиками, тригонометрическими функциями, векторами и функциями комплексного переменного.

Для получения ЭДС необходим мой частоты f = 50 Гц ротор генератора рис. 3.1 должен вращаться со скоростью 3000 об/мин. Для уменьшения скорости вращения ротора генератора увеличивают число пар полюсов электромагнита ротора. Трехфазная обмотка статора выполнена с таким же числом полюсов, как и ротора.

Ротор служит для создания основного магнитного потока. По конструкции различают роторы с явно и неявно выраженными полюсами.

Ротор с явно выраженными полюсами (рис 3.3,а) состоит из стального вала, роторной звезды и полюсов возбуждения с полюсными катушками, укрепленными на ободе роторной звезды.

При больших частотах вращения (3 тыс. об/мин), исходя из соображений механической прочности, ротор выполняют неявнополюсным (рис 3.3,6) с выфрезерованнымн на его поверхности продольными пазами, в которые закладывают обмотку возбуждения.

На валу ротора устанавливают контактные кольца, к которым присоединяют выводы обмотки возбуждения. Кольца надежно изолируют от вала и друг от друга. К кольцам прилегают щетки, укрепленные в щеткодержателях, образуя скользящий контакт. Через скользящий контакт обмотка возбуждения подключается к источнику постоянного тока. При подключении обмотки возбуждения вращающегося ротора к источнику постоянного тока создается вращающийся вместе с ротором магнитный поток Ф, пересекающий трехфазную обмотку статора и по закону электромагнитной индукции в каждой фазной обмотке образуется наводящий э д с.

Э д с статора составляет симметричную трехфазную э д с, и при подключении к обмотке статора симметричной нагрузки эта обмотка нагружается симметричной системой токов. Машина при этом работает в режиме генератора



Поделиться:


Последнее изменение этой страницы: 2020-12-09; просмотров: 1790; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.156.46 (0.011 с.)