X. 8. Стекло севера и стекло юга 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

X. 8. Стекло севера и стекло юга



В 1800 году английский астроном Гершель решил узнать, какие лучи несут больше всего тепла. Он пропустил солнечный свет через призму, так что получился спектр. Затем в различных местах спектра он положил термометры.

А один из термометров он положил за красной полоской спектра, там, где было темно.

Вскоре все термометры нагрелись.

В зеленой полоске спектра ртуть термометра поднялась на три градуса, в фиолетовой — на два. А больше всего — почти на семь градусов — поднялась она в том термометре, который лежал в темноте.

Это было очень странно.

Много раз повторяли этот опыт, и каждый раз больше всего нагревался тот термометр, который оставался в темноте, за красной полоской.

Это можно было объяснить только так: спектр на самом деле шире, чем его видят наши глаза. По соседству с красными лучами имеются еще какие-то, невидимые нами, лучи. И эти-то лучи несут больше всего тепла.

Так были открыты невидимые лучи, лежащие за красной полоской спектра. Назвали эти лучи инфракрасными.

Не прошло и года, как были открыты другие невидимые лучи, те, что находятся за другим краем спектра, по соседству с фиолетовой полоской.

На эти лучи указал не термометр: ультрафиолетовые лучи несут очень мало тепла. Их уловила фотопластинка: она потемнела там, где ее коснулись эти лучи.

Кто бы мог подумать прежде, что кроме видимого нами света есть еще и такой, который мы не видим?

Инфракрасных лучей мы не видим, но всё же мы их чувствуем: ощущаем их теплоту. Ультрафиолетовые лучи мы не ощущаем никак. А между тем эти лучи — очень сильные: они, например, убивают бактерии.

Человеку такие лучи — конечно, не в чрезмерном количестве — полезны. Недаром их называют «лучами жизни».

И вот, оказывается, эти «лучи жизни» не могут проникнуть к нам в комнаты. Стены домов задерживают большую часть всего солнечного света, а стекла в окнах, пропуская видимые лучи, задерживают примерно половину ультрафиолетовых. Значит, в комнаты проникает ультрафиолетового света во много раз меньше, чем содержится его в солнечных лучах, доходящих до земли. Понятно, что человек, не выходящий из комнаты, не может загореть, даже если комната считается солнечной.

Тот, кто проводит большую часть времени в помещении, расплачивается за это — особенно, если он живет на севере,— малокровием. Еще хуже приходится детям: кости у них не крепнут и ножки становятся кривыми. И всё это из-за недостатка ультрафиолетовых лучей!

Как, было бы хорошо, если бы можно было создать «искусственное солнце» в комнате, то есть источник света, излучающий необходимые человеку ультрафиолетовые лучи!

Ультрафиолетовых лучей очень много содержится в лампах, в которых свет дают пары ртути, когда через них проходит электрический ток. Но для того, чтобы эти лампы могли заменить солнечный свет, их стеклянная трубка должна хорошо пропускать ультрафиолетовые лучи.

Оказывается, такое стекло можно сварить не из обычной смеси соды, извести и песка, а из кварца.

Лампы из кварцевого стекла изливают целые потоки ультрафиолетового света.

В каждой больнице имеются теперь специальные лампы из этого стекла; их называют «горным солнцем». Болезни боятся их света: раны быстрее затягиваются, воспаление проходит, малокровие исчезает.

Из кварцевого стекла делают в больших количествах трубки для ртутных ламп, а большие тонкие листы делать еще не научились. А хорошо было бы по возможности пропустить ультрафиолетовую часть солнечного света через оконные стекла в комнаты. Нельзя ли всё же сделать оконное стекло прозрачным для ультрафиолетовых лучей?

Это была не легкая задача, но химики ее разрешили.

Химики начали с того, что попытались узнать, какое же вещество из тех, что составляют стекло, задерживает ультрафиолетовые лучи. Оказалось, что ни песок, ни известь, ни сода в этом не виновны. Виновно железо, — ничтожная примесь железа имеется в стекле.

Наоборот, примесь борной кислоты облегчает ультрафиолетовым лучам прохождение сквозь стекло.

Узнав это, химики составили особый рецепт стекла, такого стекла, в котором почти нет железа и много борной кислоты. Это стекло назвали увиолевым.

Так химики разрешили трудную задачу: создали стекло, прозрачное для ультрафиолетовых лучей.

Казалось бы, недалеко то время, когда в окна можно будет вставлять увиолевое стекло и в комнату впервые за тысячи лет вольется настоящий, оздоравливающий солнечный свет.

Но, к величайшему огорчению ученых и врачей, оказалось, что в больших городах, над которыми всегда поднимается дым и копоть многочисленных заводов, утьтрафиолетовые лучи почти полностью поглощаются в атмосфере, и до нас доходит солнечный свет, почти лишенный целебных ультрафиолетовых лучей.

Так что вставлять в окна городских домов увиолевые стекла бесполезно. Но зато за городом, в больницах и санаториях, где лечатся и отдыхают больные, конечно, надо стараться использовать весь ультрафиолетовый свет. Особенно это важно на севере, где солнце не так щедро и его свет надо ловить и ценить.

Но только разрешили ученые, задачу получения стекол, пропускающих ультрафиолетовые лучи, как перед ними встала другая, обратная: создать стекло, совершенно не пропускающее эти лучи.

Мы уже говорили, что обычное стекло пропускает очень мало ультрафиолетового света. Но даже и это малое количество невидимого света может иногда натворить большие беды.

В витрине магазина выставлены красивые пестрые ткани. Их заливают потоки солнечного света. Не пройдет и десяти дней, как краски заметно поблекнут, дорогие ткани «выгорят». Это сделали ультрафиолетовые лучи.

В просторных залах библиотеки имени Ленина в Москве бережно хранятся рукописи и письма великих русских писателей: Пушкина, Гоголя, Толстого, Горького. В широкие окна льется солнечный свет, а с ним и ультрафиолетовые лучи. Чернила бледнеют и выцветают, сама бумага желтеет. Если не принять мер, то через месяц вместо драгоценного документа у нас окажется простой листок бумаги: все, что на нем было написано, исчезнет бесследно.

Можно ли сделать стекло совершенно непрозрачным для ультрафиолетовых лучей?

Казалось бы, проще всего сварить стекло с большой примесью железа; ведь именно железо задерживает эти лучи. Но такое стекло было бы зеленым, оно плохо пропускало бы и видимый свет.

Химики нашли среди «редких земель» такие, которые задерживают ультрафиолетовый свет еще сильнее, чем железо. Сварили стекло с примесью этих веществ. Получилось стекло бесцветное и не пропускающее невидимых лучей.

Такое стекло изготовляют теперь специально для музеев и библиотек.

Инфракрасные лучи тоже причиняют подчас большие неприятности.

Больному делают сложную операцию. Над столом висит очень мощная лампа: хирургу надо отчетливо видеть все кровеносные сосуды и нервы, идущие к больному органу. Но всякая лампа дает не только обычные, а еще и инфракрасные, тепловые лучи. И вот в операционной становится жарко, как в бане, хирургу работать тяжело, лампа обжигает и сушит рану.

Нужно было как-то обезвредить лампу: придумать фильтр, который задерживал бы тепловые лучи. Конечно, таким фильтром могло быть только стекло.

Химики сумели создать и такое стекло.

В этом случае железо сослужило полезную службу. Ни один другой металл не задерживает инфракрасные лучи так хорошо, как железо, если одновременно с железом в стекло добавить немного угля и металлического олова или цинка. При этом железо окрашивает стекло довольно слабо в зеленовато-голубой цвет. Поэтому теплозащитное стекло, избавляя от теплового действия инфракрасных лучей, почти не искажает окраску рассматриваемых через него предметов.

Такое стекло нужно не только в операционных. Теплозащитные светофильтры используются, например, в кинопроекционных аппаратах. Дело в том, что цветные киноленты менее прозрачны, чем черно-белые, и для того, чтобы цветное изображение на экране было достаточно ярким, надо иметь в кинопроекторе очень мощный источник света. Но такие источники света вместе с мощным потоком света излучают и очень много тепла.

Сильный перегрев очень вреден для цветной пленки: она пересыхает, краски ее выцветают. Понятно, что при таких условиях пленка очень быстро портится, а ведь картина должна жить как можно дольше, чтобы ее посмотрели во всех уголках страны. Как же сохранить кинопленку? И здесь также помогло теплозащитное стекло; его ставят между источником света и кинолентой. Стекло поглощает почти все тепловые лучи, и пленка не перегревается.

Очень полезны теплозащитные стекла и тогда, когда людям приходится работать рядом с печами, от которых пышет жаром.

Но у всех теплозащитных стекол есть один существенный недостаток. Ведь когда стекло поглощает тепло, оно само нагревается. Чем дольше находится теплозащитное стекло на пути тепловых лучей, тем сильнее оно нагревается. Наконец температура стекла становится настолько высокой, что оно само делается источником тепла.

Многие, не учитывая собственного нагревания теплозащитных стекол, считали, что на юге, где летом очень жарко, надо вставлять в окна домов и веранд теплозащитные стекла, и тогда в помещениях будет приятная прохлада. Однако это не совсем так. Поглощая солнечные лучи, стекла постепенно накалятся, и от них начнет излучаться тепло, как от жарко натопленных печек. Ясно, что в этом случае значительной защиты от тепловых лучей не получится.

Для защиты помещений от перегрева солнцем было бы значительно интереснее иметь стекла, которые не поглощают, а отражают тепловые лучи. Обыкновенное зеркало получается при нанесении на стекло тончайшего слоя алюминия или другого металла. Блестящая поверхность металла отражает почти весь падающий на нее видимый свет. Можно найти и нанести на стекло такие пленки, которые будут пропускать все видимые лучи и отражать тепловые.

Такие инфракрасные зеркала почти не нагреваются и смогут служить надежной защитой от тепловых лучей как угодно долго.

X.9. НЕВИДИМЫЙ СВЕТ

Но не всегда инфракрасные лучи излишни. Бывают и такие случаи, когда нам нужны именно эти лучи, а не видимый свет.

Инфракрасными лучами пользуются, например, на войне. На фотопластинке, чувствительной к этим лучам, можно снять — в полной темноте — военный лагерь противника, город, военный корабль. Через туман невидимые инфракрасные лучи проникают лучше, чем видимые, и они противнику незаметны.

Их пускают узким пучком, как луч прожектора, и такую передачу сигналов противнику очень трудно перехватить. Во всех таких случаях нужна лампа, дающая только инфракрасные лучи.

Однако лампы, которая давала бы лишь одни эти лучи, нет. Всякая лампа испускает и видимые и невидимые лучи. А ведь если к пучку невидимых лучей примешаются видимые, сигнализация сразу станет заметной, ее увидит неприятель.

Надо, значит, задержать на этот раз видимый свет, а пропустить одни только инфракрасные лучи. Это делает особое, черное — с добавкой марганца и хрома — стекло — марблит. Лампа, сделанная из этого стекла, совсем не светит, хотя бы она была светосилой в тысячи свечей. Марблит задерживает видимый свет. Зеркальный отражатель с таким стеклом пропустит только инфракрасные лучи.

Не менее важным стеклом, открывшим перед учеными новые возможности, оказалось стекло, которое поглощает все лучи, кроме ультрафиолетовых. Если через такое стекло смотреть даже на ярко освещенные предметы, то их будет совсем не видно, а ультрафиолетовые лучи оно будет пропускать очень хорошо. Этим стеклом воспользовались, чтобы отфильтровать — выделить один только ультрафиолетовый свет.

Если источник света, например ртутную дугу, заключить в фонарь с таким стеклом, то в комнате будет почти совершенно темно, конечно, если перед этим закрыть черными шторами окна. Но вот вы вошли в комнату, немного присмотрелись и привыкли к темноте, и тогда вы будете наблюдать очень интересные явления. Прежде всего вы увидите, что на темном фоне лиц окружающих вас людей светятся яркими голубовато-белыми пятнами белки глаз и зубы, а также ногти на руках. Некоторые предметы, за которыми раньше, при обычном свете, не наблюдалось ничего особенного, также начинают светиться необычным, каким-то совсем особенным, волшебным светом, и при этом окраска его очень разнообразна.

Многие кристаллические вещества, природные минералы, растворы органических красителей, а также многие сорта стекол светятся голубым, зеленым, желтым, красным, — словом, всеми цветами спектра. Это так красиво, что те, кто видят это замечательное явление в первый раз, обычно не могут оторвать глаз от волшебной игры красок.

Особенно замечательно то, что светится вся глубина вещества, а не только его поверхность. Это явление свечения различных веществ при освещении их ультрафиолетовым светом называется люминесценцией.

Наука о люминесценции многим обязана крупнейшему советскому физику, академику С. И. Вавилову и его ученикам.

Люминесценцию сейчас очень часто можно видеть в театрах. Никакими другими световыми эффектами и техническими приспособлениями нельзя изобразить всевозможные сказочные превращения и волшебства так красиво и просто, как с помощью люминесценции. Если на темной сцене вдруг распускаются чудесные светящиеся цветы или вырастают роскошные дворцы, — это значит, что в рампе зажгли ртутные лампы, закрытые черным стеклом, пропускающим только ультрафиолетовые лучи. Цветы же и дворцы были нарисованы на декорациях заранее особыми составами, которые светятся под действием ультрафиолетовых лучей, а при обычном свете их совсем не видно.

Люминесценция не только эффектное, красивое зрелище. Это целый огромный мир, который открылся ученым совсем недавно, всего лишь несколько десятилетий назад. А сейчас наука о люминесценции бурно развивается и проникает в самые разнообразные отрасли науки, промышленности и искусства.

С помощью люминесценции изучают законы строения вещества и изменений, происходящих в них. Открывают ничтожные тримеси различных металлов в рудах. По характеру и цвету люминесценции различают совершенно одинаковые по внешнему виду материалы, обнаруживают дефекты в металлических деталях, определяют всхожесть семян и т. д.

Очень важные результаты дала науке микроскопия в ультрафиолетовых лучах. Оказалось, что многие микроорганизмы и клетки, если их рассматривать под микроскопом в ультрафиолетовом свете, становятся очень хорошо видны благодаря тому, что они сильно люминесцируют различными цветами. При рассмотрении же в обычном белом свете их часто совсем нельзя различить, потому что они не отличаются по цвету от окружающей среды.

С помощью люминесцирующих веществ даже превращают энергию ультрафиолетовых лучей в видимый свет.

Что же это за черное стекло, с помощью которого можно видеть невидимый свет и выделять одни только ультрафиолетовые лучи из солнечного света или другого источника света? Это стекло прежде всего должно быть изготовлено из очень чистых материалов, таких же чистых, как те, из которых изготовляют бесцветные, прозрачные для ультрафиолетовых лучей стекла. К такому чистому стеклу добавляют довольно много никеля и кобальта, которые так сильно окрашивают стекло, что оно кажется совсем черным, но для ультрафиолетовых лучей оно остается еще очень прозрачным.

Есть еще лучи Рентгена. Ими просвечивают тело насквозь, так что становятся видны внутренние органы и кости. Кроме того, они излечивают многие болезни.

Однако эти лучи в то же время очень опасны.

Первой жертвой их был ученый Халл-Эдуарс. Он начал исследования рентгеновских лучей в 1896 году, вскоре после того, как они были открыты.

Спустя некоторое время доктор Халл-Эдуарс заметил на своей руке небольшую язву. Затем появились одна за другой еще несколько язв. Лечение не помогало. Язв становилось всё больше, он начал сильно страдать.

Только тогда он понял, как лукавы эти новые лучи. Они исцеляли пациентов, но уничтожали мышцы и кости врача. В конце концов ему пришлось отнять руку.

С тех пор врачи, работающие у рентгеновских аппаратов, стали защищаться свинцовым экраном: свинец — это как бы защитная броня, он не пропускает рентгеновских лучей. Но через свинец ничего не увидишь. Нужна была прозрачная броня.

На помощь опять пришли химики-стеклотехники. Они сварили стекло с большой примесью свинца. Плитки из такого стекла прозрачны для световых лучей и непроницаемы для рентгеновских.



Поделиться:


Последнее изменение этой страницы: 2020-12-09; просмотров: 66; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.222.115.120 (0.029 с.)