Спонтанный и индуцированный мутационный процесс. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Спонтанный и индуцированный мутационный процесс.



Спонтанные мутации возникают под влиянием природных факторов(мутагенные факторы).Чаще всего как результат ошибок при воспроизведении генетического материала(ДНК или РНК). Частота спонтанного мутирования у каждого вида генетически обусловлена и поддерживается на определенном уровне.

Индуцированный мутагинез – это искусственное получение мутации с помощью физических и химических, биологических мутагенов. Т.о. мутационная изменчивость обусловлена не перекомбинацией генов, а нарушение наследственных структур.

Закон Вавилова - закон гомологических рядов в наследственной изменчивости.

Виды и роды, близкие генетически, связанные единством происхождения, характеризуются сходными рядами наследственной изменчивости, зная, какие формы изменчивости встречаются у одного вида, можно предвидеть нахождение аналогичных форм у других видов.

Фактами, подтверждающими этот закон, являются случаи альбинизма у позвоночных, гемофилия у человека и др. млекопитающих, отсутствие остей в соцветиях, черная окраска и голозернистость злаковых культур и т.д.

Появление сходных мутаций объясняется некоторой общностью генотипов. В процессе возникновения новых видов различия между ними устанавливаются только по части генов, обусловливающих успешное существование их в конкретных условиях. В то же время многие гены у видов данного рода или даже семейства остаются неизменными и при мутациях дают сходные признаки.

Закон Н.И.Вавилова имеет большое практическое значение, поскольку прогнозирует поиск определенных форм изменчивости у растений и животных. Зная характер изменчивости одного или нескольких близких видов, можно целенаправленно искать формы, еще не известные у данного организма, но уже открытые у его таксономических родственников.

Клеточный цикл.

Клеточный цикл — это жизнь клетки от одного деления до другого. Про клетки, которые делиться больше не будут, обычно говорят, что они вышли из клеточного цикла. Продолжительность клеточного цикла у бактерий может составлять всего 20–30 мин, а у клеток эукариот цикл обычно длится не менее 10–12 ч, часто сутки и более. Исключение составляют быстро делящиеся клетки самых ранних зародышей, весь цикл у них может проходить за 15—20 мин. Клетки взрослых многоклеточных организмов, как животных, так и растений, обладают разной способностью к делению. В одних тканях, например нервной, мышечной, клетки вообще не делятся. Другие ткани, напротив, постоянно обновляются. В этом случае существуют группы клеток, которые постоянно делятся, т. е. находятся в клеточном цикле, а их потомки перестают делиться, некоторое время функционируют и отмирают. Так происходит с клетками крови (делящиеся клетки находятся в костном мозге, а зрелые выходят в кровь), кожи, кишечника, в проводящей системе растений. Выход клеток из цикла может быть необратимым, но многие клетки, не размножающиеся в обычных условиях, могут приобрести эту способность вновь. Клетки печени, например, в норме почти не делятся, но после удаления части органа вступают в клеточный цикл и делятся один-два раза. Клетки коры некоторых многолетних растений способны, начав делиться, восстанавливать механические повреждения коры (см. Регенерация). Клеточный цикл состоит из двух фаз — собственно деления клетки (митоза) и промежутка между делениями — интерфазы. В свою очередь, митоз и интерфаза подразделяются на ряд периодов. Ключевой стадией интерфазы, после которой возможно деление клетки, является так называемый синтетический период (S-период) — промежуток времени, когда удваивается ДНК ядра. (Интересно отметить, что удвоение ДНК митохондрий и хлоропластов может не совпадать по времени с S-периодом — оно происходит независимо от ядра.) В большинстве случаев между предыдущим делением и началом S-периода существует промежуток времени G1-период (от английского слова gap — промежуток, пауза). По окончании синтеза ядерной ДНК деление начинается не сразу, а после G2-периода (вторая пауза). На самом деле никаких пауз в жизни делящихся клеток нет. Дело в том, что в течение клеточного цикла (а более 90% продолжительности его падает на интерфазу) объем клетки должен увеличиться примерно вдвое, с тем чтобы размеры дочерних клеток соответствовали размерам материнской. Поэтому в размножающихся клетках идет довольно интенсивный синтез РНК и белков. Он начинается сразу после митоза, в G1-периоде, затем усиливается в S-пeриоде и достигает максимальной интенсивности в середине G2-периода. Во время митоза синтез РНК прекращается полностью, а синтез белка составляет не более 1/4 от интерфазного уровня. Выход клеток из цикла происходит в естественных условиях сразу после митоза: вместо G1-периода они вступают в так называемый G0-период, или состояние покоя, хотя этот покой относителен. G0-период — это время выполнения клеткой ее специализированных функций. Возвращение клеток в цикл (если оно возможно) начинается со вступления их под действием стимулирующих агентов в G1-пeриод, и лишь затем начинается синтез ядерной ДНК. Таким образом, очевидно, что в G1-периоде происходят определенные подготовительные процессы для вступления в S-пeриод. Установлено, что для прохождения клеткой цикла необходимо последовательное включение определенных генов. Синтез белков, обеспечивающих каждую стадию цикла, осуществляется чаще всего заранее — в G1-пeриоде синтезируются белки, участвующие в синтезе ДНК; в G2-периоде — белки, необходимые для митоза и начала следующего, G1-периода, и т. д.

Митоз.

Обеспечивает равномерное распределение хроматина между дочерними клетками. Митоз состоит из кариогенеза – деление ядра, цитогенеза – деление цитоплазмы. Выделяют 2 основные стадии: интерфаза и собственный митоз. В интерфазе происходит накопление белка, РНК и других продуктов; синтезируется ДНК и происходит самоудвоение хромосом; продолжается синтез ДНК и белков и накапливается энергия. Профаза – хромосомы – клубок длинных тонких хроматиновых нитей, разрушается ядрышко, нити веретена прикрепляются к центриолям, которые разделились и находятся на противоположных полюсах клетки, ядерная оболочка клетки разруш-ся. Метафаза (материнская звезда) – утолщение, спирализация хромосом, перемещение их в экваториальную полость клетки. Анафаза (дочерняя звезда) – разделение, удвоение хромосом на хроматиды, которые расходятся к противоположным полюсам клетки. Телофаза – сестринские хроматиды достигают противоположных полюсов и деспирализуются – 2 дочерних ядра, происходит деление цитоплазмы, образование оболочек клеток. Значение: точное распределение хромосом между 2 дочерними клетками; сохраняется преемственность хромосомного набора в ряду клеточных поколений и полноценность генетической информации каждой клетки.

 

Мейоз

Это способ образования половых клеток. Сначала идёт интерфаза, т.е. перед делением каждая хромосома состоит из сестринских хроматид. Он сост из 2 делений: редукционное (уменьшительное) и эквационное (уравнительное). Профаза сильно растянута во времени. 1. лептонема – кажд хромосома сост. из 2 сестринских хроматид и наз-ся моновалент. Хромосомы деспирализованы. 2. зигонема – гомологичные хромосомы начин-ют сливаться – конъюгация. 3. пахинема – конъюгация заверш-ся, т.е. парные хром-мы соед-ся по всей длине – синопсис. Соединённые в пары хром-мы – биваленты (2 моновалента, 4 хроматида). Начин-ся кроссинговер в результате изменения последовательности генов. 4. диплонема – хром-мы отталкиваются др от друга, но удерживаются вместе за счёт перекрёста, образуют хиазму. 5. диагенез – хром-мы спирализуются, хиазмы исчезают, формир-ся веретено деления, растворяются ядрышки и яд оболочка, бивалент оказывается в цитоплазме. Метафаза – биваленты выстраиваются по экватору клетки и прикрепляются центромерами к нитям веретена деления. Анафаза – биваленты распадаются на моноваленты, кот по нитям веретена скользят к противоположным полюсам клетки. Телофаза – достигнув полюсов, моноваленты окружают себя яд оболочкой, образ-ся 2 ядра с гаплоидным набором хромосом. Но кажд хром-ма сост из 2 сестринск хроматид. После первого деления следует короткая фаза покоя – интергенез. После этого клетка вступает в эквационное деление. Оно идёт по типу митоза, т.е. в анафазе к полюсам клетки расходятся хроматиды. В рез-те двух делений из одной материнской клетки с диплоидным набором образ-ся 4 дочерние с гаплоидным набором хром-м. Значение: образ-ся гаметы с гаплоидным набором хром-м, возрастает комбинативная изменчивость у потомства (за счёт кроссинговера, за счёт независимой комбинации родительск хром-м в гаметах).

 



Поделиться:


Последнее изменение этой страницы: 2020-12-09; просмотров: 144; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.227.190.93 (0.004 с.)