Элементы II группы главной подгруппы 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Элементы II группы главной подгруппы



Положение в периодической системе химических элементов

Щелочноземельные металлы расположены во второй группе главной подгруппе периодической системы химических элементов Д.И. Менделеева (или просто во 2 группе в длиннопериодной форме ПСХЭ). На практике к щелочноземельным металлам относят только кальций Ca, стронций Sr, барий Ba и радий Ra. Бериллий Be по свойствам больше похож на алюминий, магний Mg проявляет некоторые свойства щелочноземельных металлов, но в целом отличается от них. Однако, согласно номенклатуре ИЮПАК, щелочноземельными принято считать все металлы II группы главной подгруппы.

Электронное строение и закономерности изменения свойств

Электронная конфигурация внешнего энергетического уровня щелочноземельных металлов: ns 2, на внешнем энергетическом уровне в основном состоянии находится 2 s -электрона. Следовательно, типичная степень окисления щелочноземельных металлов в соединениях +2.

Рассмотрим некоторые закономерности изменения свойств щелочноземельных металлов.

В ряду BeMgCaSrBaRa, в соответствии с Периодическим законом, увеличивается атомный радиус, усиливаются металлические свойства, ослабевают неметаллические свойства, уменьшается электроотрицательность.

 

Физические свойства

Все щелочноземельные металлы — вещества серого цвета и гораздо более твердые, чем щелочные металлы.

Бериллий Be устойчив на воздухе. Магний и кальций (Mg и Ca) устойчивы в сухом воздухе. Стронций Sr и барий Ba хранят под слоем керосина.

Кристаллическая решетка щелочноземельных металлов в твёрдом состоянии — металлическая. Следовательно, они обладают высокой тепло- и электропроводимостью. Кипят и плавятся при высоких температурах.

Нахождение в природе

Как правило, щелочноземельные металлы в природе присутствуют в виде минеральных солей: хлоридов, бромидов, йодидов, карбонатов, нитратов и др. Основные минералы, в которых присутствуют щелочноземельные металлы:

ДоломитCaCO 3 · MgCO3 — карбонат кальция-магния.

Магнезит MgCO 3 карбонат магния.

Кальцит CaCO 3 карбонат кальция.

Гипс CaSO 4 · 2H 2 O – дигидрат сульфата кальция.

Барит BaSO 4 — сульфат бария.

Витерит BaCO 3– карбонат бария.

 

Способы получения

Магний получают электролизом расплавленного карналлита или хлорида магния с добавками хлорида натрия при 720–750°С:

MgCl 2 → Mg + Cl 2

или восстановлением прокаленного доломита в электропечах при 1200–1300°С:

2(CaO · MgO) + Si → 2Mg + Ca 2 SiO 4

Кальций получают электролизом расплавленного хлорида кальция с добавками фторида кальция:

CaCl 2 → Ca + Cl 2

Барий получают восстановлением оксида бария алюминием в вакууме при 1200 °C:

4BaO+ 2Al → 3Ba + Ba(AlO 2 ) 2

Качественные реакции

Качественная реакция на щелочноземельные металлы — окрашивание пламени солями щелочноземельных металлов.

Цвет пламени:
Caкирпично-красный
Srкарминово-красный (алый)
Baяблочно-зеленый

Качественная реакция на ионы магния: взаимодействие с щелочами. Ионы магния осаждаются щелочами с образованием белого осадка гидроксида магния:

Mg 2+ + 2OH → Mg(OH) 2

Качественная реакция на ионы кальция, стронция, бария: взаимодействие с карбонатами. При взаимодействии солей кальция, стронция и бария с карбонатами выпадает белый осадок карбоната кальция, стронция или бария:

Ca 2+ + CO 32- → CaCO 3

Ba 2+ + CO 32- → BaCO 3

Качественная реакция на ионы стронция и бария: взаимодействие с карбонатами. При взаимодействии солей стронция и бария с сульфатами выпадает белый осадок сульфата бария и сульфата стронция:

Ba 2+ + SO 42- → BaSO 4

Sr 2+ + SO 42- → SrSO 4

Также осадки белого цвета образуются при взаимодействии солей кальция, стронция и бария с сульфитами и фосфатами.

Например, при взаимодействии хлорида кальция с фосфатом натрия образуется белый осадок фосфата кальция:

3CaCl 2 + 2Na 3 PO 4 → 6NaCl + 2Ca 3 (PO 4 ) 2

Химические свойства

1. Щелочноземельные металлы — сильные восстановители. Поэтому они реагируют почти со всеми неметаллами.

1.1. Щелочноземельные металлы реагируют с галогенами с образованием галогенидов при нагревании.

Например, бериллий взаимодействует с хлором с образованием хлорида бериллия:

Be + Cl 2 → BeCl 2

1.2. Щелочноземельные металлы реагируют при нагревании с серой и фосфором с образованием сульфидов и фосфоридов.

Например, кальций взаимодействует с серой при нагревании:

Ca + S → CaS

Кальций взаимодействует с фосфором с образованием фосфидов:

3Ca + 2P → Ca 3 P 2

1.3. Щелочноземельные металлы реагируют с водородом при нагревании. При этом образуются бинарные соединения — гидриды. Бериллий с водородом не взаимодействует, магний реагирует лишь при повышенном давлении.

Mg + H 2 → MgH 2

1.4. С азотом магний взаимодействует при комнатной температуре с образованием нитрида:

6Mg + 2N 2 → 2Mg 3 N 2

Остальные щелочноземельные металлы реагируют с азотом при нагревании.

1.5. Щелочноземельные металлы реагируют с углеродом с образованием карбидов, преимущественно ацетиленидов.

Например, кальций взаимодействует с углеродом с образованием карбида кальция:

Ca + 2C → CaC 2

Бериллий реагирует с углеродом при нагревании с образованием карбида — метанида:

2Be + C → Be 2 C

1.6. Бериллий сгорает на воздухе при температуре около 900°С:

2Be + O 2 → 2BeO

Магний горит на воздухе при 650°С с выделением большого количества света. При этом образуются оксиды и нитриды:

2Mg + O 2 → 2MgO

3Mg + N 2 → Mg 3 N 2

Горение кальция на воздухе

Щелочноземельные металлы горят на воздухе при температуре около 500°С, в результате также образуются оксиды и нитриды.

2. Щелочноземельные металлы взаимодействуют со сложными веществами:

2.1. Щелочноземельные металлы реагируют с водой. Взаимодействие с водой приводит к образованию щелочи и водорода. Бериллий с водой не реагирует. Магний реагирует с водой при кипячении. Кальций, стронций и барий реагируют с водой при комнатной температуре.

Например, кальций реагирует с водой с образованием гидроксида кальция и водорода:

2 Ca 0 + 2 H 2+ O = 2 Ca + (OH) 2 + H 20

2.2. Щелочноземельные металлы взаимодействуют с минеральными кислотамисоляной, фосфорной, разбавленной серной кислотой и др.). При этом образуются соль и водород.

Например, магний реагирует с соляной кислотой:

2Mg + 2HCl → MgCl 2 + H 2

2.3. При взаимодействии щелочноземельных металлов с концентрированной серной кислотой образуется сера.

Например, при взаимодействии кальция с концентрированной серной кислотой образуется сульфат кальция, сера и вода:

4Ca + 5H 2 SO 4(конц.) → 4CaSO 4 + S + 5H 2 O

2.4. Щелочноземельные металлы реагируют с азотной кислотой. При взаимодействии кальция и магния с концентрированной или разбавленной азотной кислотой образуется оксид азота (I):

4Ca + 10HNO 3 (конц) → N 2 O + 4 С a(NO 3 ) 2 + 5H 2 O

При взаимодействии щелочноземельных металлов с очень разбавленной азотной кислотой образуется нитрат аммония:

4Ba + 10HNO 3 → 4Ba(NO 3 ) 2 + NH 4 NO 3 + 3H 2 O

2.5. Щелочноземельные металлы могут восстанавливать некоторые неметаллы (кремний, бор, углерод) из оксидов.

Например, при взаимодействии кальция с оксидом кремния (IV) образуются кремний и оксид кальция:

2Ca + SiO 2 → 2CaO + Si

Магний горит в атмосфере углекислого газа. При этом образуется сажа и оксид магния:

2Mg + CO 2 → 2MgO + C

2.6. В расплаве щелочноземельные металлы могут вытеснять менее активные металлы из солей и оксидов. Обратите внимание! В растворе щелочноземельные металлы будут взаимодействовать с водой, а не с солями других металлов.

Например, кальций вытесняет медь из расплава хлорида меди (II):

Ca + CuCl 2 → CaCl 2 + Cu

 



Поделиться:


Последнее изменение этой страницы: 2020-11-28; просмотров: 336; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.116.90.141 (0.02 с.)