Тема программы: Световые волны 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Тема программы: Световые волны



Группа№31

Физика. Урок№29.

Тема программы: Световые волны

Тема урока: Корпускулярно- волновая теория света.

 Цель урока: Рассмотреть корпускулярно- волновую теорию света.

План.

История развития корпускулярно- волновой теории света.

Явления в которых демонстрируется двойственная природа света.

Содержание темы.


В конце XIX столетия было установлено, что свет есть распространяющиеся в пространстве электромагнитные волны. На основе общих свойств волновых процессов объяснили такие оптические явления как интерференция света, дифракция света, поляризация света и др.

Однако, уже в начале ХХ века при исследовании взаимодействия света с веществом были обнаружены такие оптические явления как фотоэффект, эффект Комптона, фотохимические реакции и др. Для объяснения этих явлений представления о том, что свет есть распространяющиеся в пространстве электромагнитные волны, оказались несостоятельными. Объясняя явление фотоэффекта, в 1905 г. Эйнштейн выдвинул корпускулярную теорию света, которая, развивая идеи Ньютона о световых корпускулах, рассматривала свет как поток большого числа частиц, названных фотонами. Фотонная теория света легко объяснила все качественные и количественные закономерности явлений квантовой оптики.

Представления об электромагнитной волне и представления о потоке частиц исключают друг друга. Световая волна представляет собой нелокализованное электромагнитное поле, распределенное по пространству. Объемная плотность энергии электромагнитного поля волны, пропорциональная квадрату ее амплитуды, может изменяться на сколь угодно малую величину, то есть непрерывно. В отличие от волны, фотон, как световая частица, в данный момент времени локализован вблизи некоторой точки пространства и со временем перемещается в пространстве. Световая энергия в такой модели изменяется не непрерывно, а только дискретно, оставаясь всегда кратной минимальной порции (кванту) энергии, которую несет одиночный фотон.

Оказалось, что свет есть материальный объект, обладающий как волновыми, так и корпускулярными свойствами. В различных физических процессах эти свойства могут проявляться в различной степени. При определенных условиях, то есть в ряде оптических явлений, свет проявляет свои волновые свойства. В этих случаях мы должны рассматривать свет как электромагнитные волны. В других оптических явлениях свет проявляет свои корпускулярные свойства, и тогда его следует представлять как поток фотонов.

Существуют оптические явления, которые могут быть объяснены качественно и количественно как волновой, так и корпускулярной теориями света. Так, например, обе эти теории приводят к одинаковым соотношениям для давления, оказываемого светом при падении его на вещество. Это объясняется тем, что любая модель, и волновая, и корпускулярная учитывает наличие у света таких материальных характеристик как энергия, масса, импульс.

Итак, в результате углубления представлений о природе света, выяснилось, что свет обладает двойственной природой, получившей название корпускулярно-волнового дуализма света. С некоторыми объектами свет взаимодействует как волна, с другими - подобно потоку частиц. И хотя эти картины даже противоположны друг другу, одна картина дополняет другую. "Противоположности не противоречия, а дополнения" - гласит девиз Н.Бора.

Спор волновой и корпускулярной теорий света не привел ни к окончательной победе, ни к поражению какой-либо одной из них. В этом споре родилось качественно новое понимание природы света, объединяющее эти теории в единое целое.

В физике свет оказался первым объектом, у которого была обнаружена двойственная, корпускулярно-волновая природа. Дальнейшее развитие физики значительно расширило класс таких объектов.

В заключение укажем, что еще более тесно волны и частицы света можно связать, если предположить, что движение фотона подчиняется статистическим вероятностным законам, которые определяются волновым электромагнитным полем. Действительно, будем считать, что квадрат амплитуды электромагнитной волны, то есть ее интенсивность определяет в каждой точке пространства вероятность попадания в нее фотона и, следовательно, концентрацию фотонов в этой точке светового потока. Тогда явление интерференции света, проходящего через экран с двумя щелями, можно объяснить и с точки зрения корпускулярной теории света. При падении на экран одной световой волны вероятность попадания фотона в различные точки экрана одинакова, и мы наблюдаем равномерную освещенность экрана. При прохождении света через две щели вероятность попадания фотона в различных точках экрана изменяется. В местах интерференционных максимумов эта вероятность резко увеличивается, а в местах интерференционных минимумов - уменьшается. Тем самым, поток фотонов перераспределяется в пространстве и этим перераспределением управляет волновое поле.

.

Содержание темы.

Ресурсы сети Интернет.

Электронные учебники, обучающие программы

1.Мякишев Г.Я. Физика: учебник для 10 класс общеобразоват. учреждений: базовый и профил. уровни / Г.Я. Мякишев, Б.Б. Буховцев, Н.Н Сотский; под ред. В.И. Николаева, Н.А. Парфентьевой. – 19 изд., – М.: Просвещение, 2010. –366 с.

2.Мякишев Г.Я. Физика. 11 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / Г.Я. Мякишев, Б.Б. Буховцев, В.М. Чаругин; под ред. Н.А. Парфентьевой. – 23 изд.,– М.: Просвещение, 2008. - 339 с.

3.Физика. Задачник 10-11 класс: пособие для общеобразовательных учреждений/ Рымкевич А.П. –10 изд., стереотип. М., «Дрофа» 2006.-188с.

4.1С: Образовательная коллекция. Открытая физика 1.1

 «Открытая физика» http://www.physics.ru/

5.«Виртуальный методический кабинет учителя физики и астрономии»

http://www.gomulina.orc.ru/

 

. Задание на дом: Выучить 71. Мякишев Г.Я. Физика. 11 класс: учеб. для общеобразоват. учреждений: базовый уровнь / Г.Я. Мякишев, Б.Б. Буховцев, В.М. Чаругин; под ред. Н.А. Парфентьевой. – 3 изд. – М.: Просвещение, 2016. - 432 с. Ответить на вопросы в конце параграфа.

 

 Изучите конспект и ответьте на вопросы:

Группа№31

Физика. Урок№30.

Тема урока: Скорость света.

План.

Опыт Рёмера.

Опыт Физо.

Опыт Майкелльсона.

Содержание темы.

АСТРОНОМИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ СКОРОСТИ СВЕТА

Впервые определить скорость света удалось в 1676 г. датскому астроному О. Рёмеру. Успех опыта Рёмера в решающей степени объяснялся тем обстоятельством, что расстояния, проходимые светом в этих измерениях, были поистине огромными. Именно Рёмер наблюдал затмения одного из спутников (спутник Ио) самой большой планеты Солнечной системы — Юпитера. Так как орбиты Земли, Юпитера и спутника Ио лежат в одной плоскости, то Рёмер в телескоп хорошо видел, как спутник проходил перед планетой, а затем исчезал из поля зрения, заходя в её тень. Через некоторое время Ио вновь появлялся в виде крохотной звёздочки. Промежуток времени между двумя последовательными появлениями спутника составил 42 ч 28 мин 36 с.

Свои первые измерения Рёмер провёл в то время, когда положения Земли и Юпитера на орбитах соответствовали их максимальному сближению. Примерно через полгода Рёмер повторил наблюдения затмения Ио, когда Земля удалилась от Юпитера на расстояние, равное диаметру своей орбиты. Результат оказался неожиданным: Ио в поле зрения телескопа появился на 22 мин позже, чем тогда, когда положение Земли на орбите было диаметрально противоположным. Рёмер правильно истолковал полученный результат: задержка наступления затмения равна времени, которое потребовалось свету, чтобы пройти расстояние, равное диаметру земной орбиты. Разделив это расстояние на время запаздывания, Рёмер получил значение скорости света. Это значение оказалось необычайно большим, примерно 230 000 км/с, но всё же конечным. Это и есть главный результат опыта Рёмера.

МЕТОД ФИЗО

Первым лабораторным методом по определению скорости света был опыт французского физика А. Физо, поставленный им в 1849 г. Метод Физо в общих чертах напоминал метод Галилея, только роль наблюдателя А выполняло вращающееся зубчатое колесо, а роль наблюдателя Б — плоское зеркало.

Узкий световой пучок от источника S после отражения от полупрозрачной пластинки П направлялся на кромку вращающегося зубчатого колеса К. Пройдя в прорезь между зубцами, свет падал на отдалённое зеркало 3, и отразившись, возвращался назад. Если за время движения светового луча от колеса до зеркала и обратно на месте прежней прорези появлялась новая прорезь, то наблюдатель в зрительной трубе Т видел свет. Если же за указанное время на месте прорези появлялся зубец, то свет в трубе не наблюдался. Зная частоту вращения колеса и измерив расстояние между колесом и зеркалом, Физо получил значение скорости света 312 000 км/с.

МЕТОД МАЙКЕЛЬСОНА

В другом, более точном лабораторном методе определения скорости света прерывание света осуществлялось при помощи быстро вращающегося стального восьмигранного зеркала в форме призмы.

Такой опыт был выполнен в 1879 и 1926 гг. американским физиком А. Майкельсоном. Световой пучок от источника S направлялся на грань призмы П и после отражения падал на вогнутое зеркало З1, установленное на горе. Отражённый от этого зеркала луч направлялся на такое же зеркало З2, установленное на вершине другой горы. Отражённый в обратном направлении свет вновь падал на грань призмы, и после отражения попадал в объектив зрительной трубы. При этом свет проходил суммарное расстояние, равное 70,7 км, за 1/8 оборота призмы. Зная частоту вращения призмы, Майкельсон получил значение скорости света, которое лишь незначительно отличается от общепринятого: с = 299 792 км/с.

 

 

Содержание темы.

Ресурсы сети Интернет.

Электронные учебники, обучающие программы

1.Мякишев Г.Я. Физика: учебник для 10 класс общеобразоват. учреждений: базовый и профил. уровни / Г.Я. Мякишев, Б.Б. Буховцев, Н.Н Сотский; под ред. В.И. Николаева, Н.А. Парфентьевой. – 19 изд., – М.: Просвещение, 2010. –366 с.

2.Мякишев Г.Я. Физика. 11 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / Г.Я. Мякишев, Б.Б. Буховцев, В.М. Чаругин; под ред. Н.А. Парфентьевой. – 23 изд.,– М.: Просвещение, 2008. - 339 с.

3.Физика. Задачник 10-11 класс: пособие для общеобразовательных учреждений/ Рымкевич А.П. –10 изд., стереотип. М., «Дрофа» 2006.-188с.

4.1С: Образовательная коллекция. Открытая физика 1.1

 «Открытая физика» http://www.physics.ru/

5.«Виртуальный методический кабинет учителя физики и астрономии»

http://www.gomulina.orc.ru/

 

. Задание на дом: Выучить 44. Мякишев Г.Я. Физика. 11 класс: учеб. для общеобразоват. учреждений: базовый уровнь / Г.Я. Мякишев, Б.Б. Буховцев, В.М. Чаругин; под ред. Н.А. Парфентьевой. – 3 изд. – М.: Просвещение, 2016. - 432 с. Ответить на вопросы в конце параграфа.

 

 Изучите конспект и ответьте на вопросы:

Опишите опыт Рёмера.

Опишите опыт Физо.

Опишите опыт Майкелльсона.

Уважаемый студент сфотографируйте конспект и пришлите на электронный адрес

( dima.levchenko02@ramler.ru )

 

 

Группа№31

Физика. Урок№29.

Тема программы: Световые волны



Поделиться:


Последнее изменение этой страницы: 2020-11-22; просмотров: 153; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.216.163 (0.018 с.)