Наибольшие допустимые значения сопротивлений заземлителей опор воздушных линий электропередачи 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Наибольшие допустимые значения сопротивлений заземлителей опор воздушных линий электропередачи



Характеристика объекта Удельное сопротивление грунта r, Ом × м Сопротивление Ом

Линии на напряжение выше 1000 В

Опоры, имеющие грозозащитный трос илидругие устройства грозозащиты, металлические и железобетонные опоры ВЛ 35 кВ и такие же опоры ВЛ 3 - 20 кВ в населенной местности, заземлители оборудования на опорах 110 кВ и выше

до 100 10*
более 100 до 500 15*
более 500 до 500 20*
более 100 до 500 30*
более 100 до 500 0,006 r *
Электрооборудование, установленное на опорах ВЛ 3 - 35 кВ - 250/ I р**, но не более 10

Металлические и железобетонные опоры ВЛ 3 - 20 кВ в населенной местности

до 100 30
более 100 0,3 r
Трубчатые разрядники на подходах линий к подстанциям с вращающимися машинами, вентильные разрядники на кабельных вставках подходов к подстанциям с вращающимися машинами - 5
Вентильные разрядники и нелинейные ограничители перенапряжений на подходах линий к подстанциям с вращающимися машинами - 3
Опоры с тросом на подходах линий к подстанциям с вращающимися машинами   10

Линии на напряжение до 1000 В***

Опоры ВЛ с устройствами грозозащиты - 10
Опоры с повторными заземлителями нулевого провода с источниками питания: -  
660/380 В   15
380/220 В   30
220/127 В   60

* Для опор высотой более 40 м на участках ВЛ, защищенных тросом, сопротивление заземлителей должно быть в 2 раза меньше указанных в таблице.

** I r - расчетный ток замыкания на землю, в качестве которого принимается:

в сетях без компенсации емкостного тока замыкания на землю - ток замыкания на землю;

в сетях с компенсацией емкостного тока замыкания на землю:

- для электроустановок, к которым не присоединены компенсирующие аппараты, ток, равный 12 % номинального тока наиболее мощного из этих аппаратов;

- для электроустановок, к которым не присоединены компенсирующие аппараты, - ток замыкания на землю, проходящий в данной сети при отключении наиболее мощного из компенсирующих аппаратов;

*** При удельном эквивалентном сопротивлении грунта более 100 Ом допускается увеличение приведенных значений в 0,01 r раз, но не более десятикратного.

4. ИЗМЕРЕНИЯ СОПРОТИВЛЕНИЯ ЗАЗЕМЛИТЕЛЕЙ

4.1. Общие требования к проведению измерений

Для измерения сопротивления заземлителей создается искусственная цепь протекания тока через испытываемый заземлитель.

Для этого на некотором расстоянии от испытываемого заземлителя располагается вспомогательный заземлитель (токовый электрод), подключаемый вместе с испытываемым заземлителем к источнику напряжения.

Для измерения падения напряжения на испытываемом заземлителе при прохождении через него тока в зоне нулевого потенциала располагается зонд (потенциальный электрод).

В качестве вспомогательного заземлителя и зонда могут применяться стальные неокрашенные электроды диаметром 12 - 20 мм длиной 0,8 - 1 м с болтами и барашковыми гайками для присоединения проводов.

Точность измерения сопротивления заземлителей зависит от взаимного расположения испытываемого и вспомогательного заземлителей, а также от расстояния между ними.

Схемы расположения электродов вспомогательного заземлителя и зонда относительно испытываемого заземлителя показаны на рис. 1, 2 (для сложных заземлителей) и рис. 3 (для одиночных заземлителей).

Для заземлителей, состоящих из вертикальных электродов, расположенных в ряд и объединенных горизонтальной полосой, в качестве размера «D» следует принимать длину полосы.

Размер «а» следует принимать в зависимости от размера «D», исходя из следующих соотношений:

D (м) >40 10 < D < 40 <10
а (м) ³ D ³ 40 ³ 20

При измерении сопротивления одиночных вертикальных заземлителей длиной до 6 метров следует применять схемы расположения электродов, изображенные на рис. 3, с указанными между ними расстояниями.

Для заземлителей длиной свыше 6 метров расстояние между электродами следует принимать не менее 3 l, где l - длина вертикального заземлителя.

Относительная погрешность измерения, обусловленная уменьшенными расстояниями между электродами при измерениях по схемам, приведенным на рис. 3, не превышает 5 %. Направление разноса электродов нужно выбирать таким образом, чтобы электроды не оказались ближе 10 м от подземных металлических конструкций (кабели, трубопроводы, заземлители опор ВЛ и т.п.). В некоторых случаях при наличии большого количества подземных коммуникаций может потребоваться несколько измерений при различных направлениях лучей и различных расстояниях «а» и «b». Из нескольких измеренных значений в качестве действительного значения принимают наихудший результат.

Рис. 1. Схемы расположения электродов при измерении сложных заземлителей (двухлучевая схема)

Рис. 2. Схемы расположения электродов при измерении сложных заземлителей (однолучевая схема)

Рис. 3. Схемы расположения электродов при измерении одиночных вертикальных заземлителей

где: Rx - испытываемый заземлитель;

Rв - вспомогательный заземлитель (токовый электрод);

Rз - зонд (потенциальный электрод);

b ³ 3 L (L - длина вертикального заземлителя).

Для некоторых приборов указанные расстояния могут отличаться от приведенных, что указано в данной Методике (п. 4.2; 4.3).

Полный комплект принадлежностей для производства работ по замерам сопротивления заземлителя (П4126М) должен состоять:

- 4 - 6 электродов (R в и R з), заостренных с одного конца или со спиралью типа «буравчик», а со второго конца - с поперечными рукоятками для ввертывания их в грунт, а также с болтами и гайками-барашками;

- два барабана гибкого медного провода типа ПВГ (ПВ-2) сечением 1,5 - 2,5 мм2 и длиной 100 - 120 м;

- гибкий провод типа ПВГ (ПВ-2) - 5 - 10 метров для подсоединения измерителя к заземлителю;

- рулетка 10 - 20 метров;

- молоток или кувалда весом 2 - 5 кг;

- напильник для зачистки контактов.

Электроды вворачиваются или забиваются в плотный грунт (не насыпной) на глубину не менее 0,5 метра.

В грунтах с большим удельным сопротивлением (например, песок) места, где нужно забивать вспомогательные заземлители, уплотняют или увлажняют водой, раствором соли или кислоты.

Количество штырей в измерительном (вспомогательном) электроде R в зависит от удельного сопротивления поверхностного слоя земли.

В сухих, песчаных и мерзлых грунтах может потребоваться несколько соединенных электродов.

Для устройства потенциального электрода (зонда R з) в большинстве случаев достаточно одного штыря. При измерении сопротивления заземления опор линии электропередачи, соединенных между собой грозозащитным тросом, последний должен отсоединяться от испытываемой опоры.

Сопротивление заземлителя не должно превышать нормируемого значения в любое время года.

Для получения максимально возможного значения на протяжении года (при наибольшем промерзании почвы зимой и высыхании летом) измеренные значения сопротивления должны быть умножены на поправочный коэффициент К, т.е. расчетное значение сопротивления заземлителя определяется из выражения:

R = R изм × К.

Учитывая, что ПТЭЭП 2003 года предписывают измерять сопротивление заземляющих устройств в период наибольшего высыхания грунта, что невозможно при приемосдаточных и сертификационных испытаниях и таблица поправочных коэффициентов, определенных ПЭЭП 1993 г. (таблица 40 приложения 1.1) в ПТЭЭП 2003 г. отсутствует, в данной ситуации целесообразно следующее:

- воспользоваться указанной таблицей, как зарекомендовавшей себя достаточно достоверными данными поправочных коэффициентов (К);

- на основе обработки достаточного количества статистических данных определить коэффициенты приведения результатов измерений R з y к условиям наибольшего высыхания грунта.

Величины коэффициента К по ПЭЭП 1993 г. приведены в таблице 8.

К1 применяется, если земля влажная, моменту измерения предшествовало выпадение большого количества осадков, или после весеннего паводка.

К2 - если земля нормальной влажности.

К3 - если земля сухая, количество осадков ниже нормы.

При разветвленной заземляющей сети измерения производят раздельно: сопротивление заземлителей и сопротивление заземляющих проводников, т.е. металлической связи корпусов электрооборудования с контуром заземления.

При замерзшем грунте или нахождении заземлителя ниже глубины промерзания К = 1.

При приемо-сдаточных испытаниях электроустановок зданий для повторных заземлений PEN - (РЕ)-проводников питающих сетей на вводах в здания этот коэффициент можно не учитывать, так как сопротивление повторных заземляющих устройств PEN - (РЕ)-проводников не нормируется (за исключением повторных заземлений ВЛ). При этом периодические измерения сопротивления этих заземляющих устройств в процессе эксплуатации следует производить в тех же климатических условиях (в то же время года) и по той же схеме измерения, что и при приемо-сдаточных испытаниях.

В таблице 8 приняты следующие обозначения:

t - глубина расположения в земле верхней части заземлителя;

S - площадь контура или сетки;

n - количество электродов контура;

l - длина горизонтальной полосы или вертикального заземлителя.

Таблица 8

(ПЭЭП табл. 40)

Тип заземлителя

Размер заземлителя

t = 0,7 - 0,8 м

t = 0,5 м

К1 К2 К3 К1 К2 К3

Горизонтальная полоса

l = 5 м 4,3 3,6 2,9 8,0 6,2 4,4
l = 20 м 3,6 3,0 2,5 6,5 5,2 3,8

Заземляющая сетка или контур

S = 400 м 2 2,6 2,3 2,0 4,6 3,8 3,2
S = 900 м 2 2,2 2,0 1,8 3,6 3,0 2,7
S = 3600 м2 1,8 1,7 1,6 3,0 2,6 2,3

Заземляющая сетка или контур с вертикальными электродами длиной 5 м

S = 900 м 2 1,6 1,5 1,4 2,1 1,9 1,8
n > 10 шт

1,5

1,4

1,3

2,0

1,9

1,7

S = 3600 м 2
n > 15 шт

Одиночный вертикальный заземлитель

l = 2,5 м 2,0 1,75 1,5 3,8 3,0 2,3
l = 3,5 м 1,6 1,40 1,3 2,1 1,9 1,6
l = 5,0 м 1,3 1,23 1,15 1,6 1,45 1,3

4.2. Измерение сопротивления заземляющих устройств прибором М416

Принцип действия прибора основан на компенсационном методе измерения. Структурная схема прибора приведена на рис. 4.

Переменный ток от преобразователя через первичную обмотку трансформатора, токовые зажимы 1 и 4 прибора поступает во внешнюю цепь. Вторичная цепь прибора подключена к резистору R, с помощью которого производится компенсация напряжения на измеряемом сопротивлении. При такой схеме включения на измерительное устройство (усилитель, детектор и индикатор «Р») подается разность напряжений на резисторе R и на измеряемом сопротивлении. В момент компенсации (равенства сравниваемых напряжений) ток в цепи индикатора будет равен нулю. Прибор снабжен шкалой, позволяющей непосредственно определить значение измеряемого сопротивления.

Пределы измерения прибора М416 от 0,1 до 1000 Ом, изменение пределов измерения осуществляется переключателем путем включения параллельно с резистором R сопротивлений, величина которых зависит от предела измерений.

Предел измерения прибора разбит на 4 диапазона:

0,1 - 10; 0,5 - 50; 2 - 200; 10 - 1000 Ом.

Основная погрешность прибора сохраняется в пределах паспортных данных при сопротивлениях вспомогательного заземлителя и зонда не более:

500 Ом в диапазоне измерений 0,1 - 10 Ом;

1000 Ом - 0,5 - 50 Ом;

2500 Ом - 2 - 200 Ом;

5000 Ом - 10 - 1000 Ом.

Источником питания прибора служат три последовательно соединенных сухих элемента типа «373» (1,5 В).

Измерение прибором может производиться как по трехзажимной схеме (рис. 5, измерение сопротивлений более 50 Ом), так и по четырехзажимной (рис. 6, измерение сопротивлений менее 50 Ом). При измерениях по трехзажимной схеме между клеммами 1 - 2 ставят перемычку, При этом сопротивление провода от клеммы 1 до Rx вносит погрешность в измерения.

При измерениях по однолучевой схеме расстояние от заземлителя до зонда (R з) должно быть не менее 5 D + 20 м,

где: D - наибольшая диагональ сложного заземлителя (для простого заземлителя D = 0), а от зонда до вспомогательного электрода не менее 20 м для сложного заземлителя и 10 м - для простого.

При сопротивлении электродов, используемых в качестве вспомогательного заземлителя и зонда, больше вышеуказанных, его необходимо уменьшить путем увлажнения грунта в месте их забивки (вворачивания) или использовать вместо одного несколько соединенных между собой электродов.

Измерение сопротивления электродов проводится по двухзажимной схеме (рис. 10) независимо от типа используемого прибора (М416, Ф-4301-М1).

Рис. 4. Структурная схема прибора М416

Рис. 5. Измерение больших сопротивлений R > 50 Ом

Рис. 6. Измерение малых сопротивлений R < 50 Ом

Порядок измерений следующий:

установить переключатель в положение «Контроль 5 Ом», нажать кнопку и вращением ручки «Реохорд» добиться установки стрелки индикатора на нулевую отметку, на шкале при этом должно быть показание 5 ± 0,3 Ом;

собрать схему измерения;

переключатель диапазонов установить в положение «XL», нажать кнопку и вращением реохорда установить стрелку на нуль.

Если измеряемое сопротивление более 10 Ом, выбрать другой предел измерений.

Для точного измерения очень малых сопротивлений заземлителя может быть использован метод «амперметра-вольтметра», схема которого представлена на рис. 7.

При этом

Этот метод требует наличия постороннего источника напряжения или сети 220/380 В, что ограничивает возможности его применения.

Рис. 7. Схема измерения сопротивления заземлителя методом амперметра-вольтметра

4.3. Измерение сопротивления заземляющих устройств прибором Ф4103-М1

Прибор Ф4103-М1 позволяет измерять сопротивление заземляющих устройств электроустановок практически всех напряжений. Принцип действия прибора аналогичен принципу действия прибора М416. Прибор имеет встроенный источник постоянного тока, обеспечивающий не менее 800 измерений, преобразователь переменного тока в стабилизированный переменный ток частотой 280 Гц и обладает высокой помехозащищенностью. Измерение сопротивления заземляющих устройств выполняется по схеме, приведенной на рис. 8.

Рис. 8. Схема измерения заземляющих устройств прибором Ф4103-М1

Направление разноса электродов и выбирается так, чтобы соединительные провода не проходили вблизи металлоконструкций и параллельно трассе ЛЭП. При этом расстояние между токовыми и потенциальными проводами должно быть не менее 1 м. Присоединение проводов к ЗУ выполняется на одной металлоконструкции, выбирая места подключения на расстоянии 0,2 - 0,4 м друг от друга. Измерительные электроды размещаются по однолучевой или двухлучевой схеме. Токовый электрод ( ) устанавливается на расстоянии L З T = 2 D (предпочтительно L З T = 3D) от края испытуемого устройства (D - наибольшая диагональ заземляющего устройства), а потенциальный электрод ( ) - поочередно на расстояниях (0,2; 0,3; 0,4; 0,5; 0,6; 0,7; 0,8) L З T.

Измерение сопротивления ЗУ проводится при установке потенциального электрода в каждой из указанных точек. По данным измерений строится кривая «Б» зависимости сопротивления ЗУ от расстояния потенциального электрода до заземляющего устройства.

Пример такого построения представлен на рис. 9.

Рис. 9. Зависимость сопротивления ЗУ от расстояния потенциального электрода до заземляющего устройства

L З T - расстояние от края ЗУ до токового электрода. Полученная кривая «Б» сравнивается с кривой «А».

Если кривая «Б» имеет монотонный характер (такой же, как у кривой «А») и значения сопротивления ЗУ, измеренные при положениях потенциального электрода на расстояниях 0,4 L З T и 0,6 L З T отличаются не более чем на 10 %, то место забивки электродов выбраны правильно, и за сопротивление ЗУ принимается значение, полученное при расположении потенциального электрода на расстоянии 0,5 L З T.

Если эта кривая («Б1») принципиально отличается от кривой «А» (не имеет монотонного характера), что может быть следствием влияния надземных и подземных металлоконструкций, то измерения необходимо повторить при расположении токового электрода в другом направлении от заземляющего устройства.

Если значения сопротивления ЗУ, измеренное при положениях потенциального электрода на расстоянии 0,4 L З T и 0,6 L З T отличаются более чем на 10 %, то повторить измерения сопротивления ЗУ при увеличенном в 1,5 - 2 раза расстоянии от ЗУ до токового электрода.



Поделиться:


Последнее изменение этой страницы: 2020-11-11; просмотров: 142; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.147.104.120 (0.062 с.)