Неметаллические твердые материалы 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Неметаллические твердые материалы



В неметаллических твердых материалах, существуют связи, которые ранжируют от чисто ковалентной связи (алмаз), через ковалентную связь с частью ионной связи, к исключительно ионной связи (Al2O3) (рис. 17-3). Металлическая связь, достопримечательно, отсутствует. Таким образом, эти материалы не показывают высокую проводимость металлов. Некоторые из этих твердых материалов (SiC) имеют полупроводниковые свойства (отрицательный коэффициент удельного удельного электрического сопротивления). Эти свойства могут быть воспроизведены в алмазах, добовлениями элементов групп III и V. Остаточный член от неметаллических твердых материалов – изолятор. Таблица 17-2 подводит итог свойств важных неметаллических твердых материалов. Должно быть отмечено, что твердость этих материалов в ообщем уменьшается более медленно с увеличением температуры, чем таковая металлических твердых материалов, особенно в случае кубических твердых материалов (рис. 17-4).

Кристаллические структуры неметаллических твердых материалов очень различны. Только твердые материалы, сделанные от элементов группы IVb имеют упорядоченную кристаллическую структуру. Для первого важного элемента этой группы, углерода, увеличение давления преобразовывает обычно устойчивое слоистое строение графита в алмазное строение с тетрагональным расположением атомов (координационое число K = 4). Дальнейшее увеличение давления ведет к увеличению этого числа; число металлических связей увеличивается. Для элементов последовательных периодов, переход к строениям с более высоким координационным числом происходит при более низких давлениях. Для SiC, например, тетрагональное, подобное алмазу расположение атомов (K = 4) устойчив даже в атмосферном давлении, и различная последовательность четырехгранников ведет к ряду кристаллографических форм (кубическая, гексагональная, ромбическая). Кремний и последовательные элементы (Ge, Sn) более не рассматривается как твердые материалы. Они кристаллизуются с более высокой координацией, и поэтому имеют увеличивающейся металлический характер, также как более низкую твердость.

Разработка прижимных технологий сверхвысокого давления и генерации диаграмм состояния давление-температура были оба важные предварительные условия для более широкого использования сверхтвердых спекаемых материалв. Нитрид бора (BN), который не встречаться в виде самородка, является исходом этих разработок; как межэлектронное соединение, он очень подобен углероду. От графитового строения, под давлением атомы формируют четырехгранники и затем гексагональную решетку (строение вюртцита). Далее увеличение давления ведет к простой кубической ячейке (типа цинк). Две сверхтвердые фазы (вюртцит и типа цинк) более подробно расмотренны в секции 2.6.4, как - " синтетические алмазы". По сравнению с алмазом, BN имеет большее сопротивление окислению и более высокую термодинамическую стабильности в отношении черных металлов; это означает что, он более соответствует для механической обработки этих материаллов, чем алмаз (секция 3). Коммерчески важные спекаемые материалы, сделанные из неметаллических твердых материалов (керамика) здесь не описываются, с тех пор уж есть всесторонне изданная информация в этой области.


Твердые сплавы

 

Твердые сплавы - соединения металлических твердых материалов связанных металлом [4 до 6]. Эта группа, часто рассматривается как отнесенная к спекаемым соединениям карбидов (и нитридов) и черные металлы. Иногда, используются другие классификации. Дело обстоит так особенно при различении их от кермета и соединений с сверхтвердыми материалами.

Основные типы твердых сплавов, которые являются до сих пор преобладающими – твердые сплавы WC-Cо, предпочтительно использованные для работы с материалами, которые формируют короткую станочная стружка (серый чугун), и твердые сплавы основанные на WC-TiC-Co и WC-TiC-TaC-Co для работы с материалами, которые дают длинную станочную стружку (стали). В нескольких случаях, характеристика твердых сплавов может быть улучшена значительно, покрытием (секция 2.5) [6] к [8]. Твердые сплавы с TiC, TiN или Ti (C, N) используются в случаях, где требуются высокие скорости резания [9] до [12]. Они обычно упоминаются как "керметы". Чтобы выполнять специальные требования, например высокая коррозиеустойчивость, также используются другие твердые материалы и связки (секция 2.6).

Коммерчески располагаемые твердые сплавы для режущих инструментов обычно классифицируется применениям соответствии со стандартом 513 DIN-ISO. Это категоризирует применение в три главных группы, которые потом подразделяются условиями механической обработки. Эта область от чистой механической обработки с высокой скоростью резания к механической обработке в низкой скорости резания и в неблагоприятных условиях, типа большой глубины пропила и ступенчатого резания.



Поделиться:


Последнее изменение этой страницы: 2020-03-26; просмотров: 41; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.77.114 (0.004 с.)