Международная система единиц 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Международная система единиц



 

СИ (SI, фр. Système International d’Unités) (Система Интернациональная) - международная система единиц, современный вариант метрической системы. СИ является наиболее широко используемой системой единиц в мире, как в повседневной жизни, так и в науке и технике. Тем не менее, в большинстве научных работ по электродинамике используется Гауссова система единиц, из-за ряда недостатков системы СИ. В частности, в системе СИ напряжённость и индукция имеют разную размерность: возникает т. н. диэлектрическая проницаемость вакуума, что лишено физического смысла.

В настоящее время СИ принята в качестве основной системы единиц большинством стран мира и почти всегда используется в области техники, даже в тех странах, в которых в повседневной жизни используются традиционные единицы. В этих немногих странах (например, в США) определения традиционных единиц были изменены - они стали определяться через единицы СИ.

Единицы международной системы единиц СИ

Названия единиц СИ пишутся со строчной буквы, после обозначений единиц СИ точка не ставится, в отличие от обычных сокращений.

 

Таблица 1. Основные единицы СИ

Величина

Единица

Наименование Размерность Наименование

Обозначение

Определение
      международное русское  
Длина L метр m м Метр есть длина пути, проходимого светом в вакууме за интервал времени 1/299 792 458 s [ХVII ГКМВ (1983 г.) Резолюция 1]
Масса М килограмм kg кг Килограмм есть единица массы, равная массе международного прототипа килограмма [I ГКМВ (1889 г.) и III ГКМВ (1901 г.)]
Время Т секунда s с Секунда есть время, равное 9 192 631 770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133 [XIII ГКМВ (1967 г.), Резолюция 1]
Сила электрического тока I ампер А А Ампер есть сила неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии 1 m один от другого, вызвал бы на каждом участке проводника длиной 1 m силу взаимодействия, равную 2×10-7 N [МКМВ (1946 г.), Резолюция 2, одобренная IX ГКМВ (1948 г.)]
Термодинамическая температура Q кельвин К К Кельвин есть единица термодинамической температуры, равная 1/273,16 части термодинамической температуры тройной точки воды [XIII ГКМВ (1967 г.), Резолюция 4]
Количество вещества N моль mol моль Моль есть количество вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой 0,012 kg. При применении моля структурные элементы должны быть специфицированы и могут быть атомами, молекулами, ионами, электронами и другими частицами или специфицированными группами частиц [XIV ГКМВ (1971 г.), Резолюция 3]
Сила света J кандела cd кд Кандела есть сила света в заданном направлении источника, испускающего монохроматическое излучение частотой 540×1012 Hz, энергетическая сила света которого в этом направлении составляет 1/683 W/sr [XVI ГКМВ (1979 г.), Резолюция 3]

 

Примечания:

. Кроме термодинамической температуры (обозначение Т) допускается применять также температуру Цельсия (обозначение t), определяемую выражением t = T - T0, где Т0 = 273,15 К. Термодинамическую температуру выражают в Кельвинах, температуру Цельсия - в градусах Цельсия. По размеру градус Цельсия равен кельвину.

. Интервал или разность термодинамических температур выражают в кельвинах. Интервал или разность температур Цельсия допускается выражать как в кельвинах, так и в градусах Цельсия.

. Обозначение Международной практической температуры в Международной температурной шкале 1990г., если ее необходимо отличить от термодинамической температуры, образуется путем добавления к обозначению термодинамической температуры индекса «90» (например, Т90 или t90).

 

Виды измерений

Измерения как экспериментальные <http://ru.wikipedia.org/wiki/%D0%AD%D0%BA%D1%81%D0%BF%D0%B5%D1%80%D0%B8%D0%BC%D0%B5%D0%BD%D1%82> процессы весьма разнообразны. Это объясняется множеством экспериментальных величин, различным характером измерения величин, различными требованиями точности измерения и другие.

Наиболее распространена классификация видов измерений <http://ru.wikipedia.org/wiki/%D0%98%D0%B7%D0%BC%D0%B5%D1%80%D0%B5%D0%BD%D0%B8%D0%B5> в зависимости от способа обработки экспериментальных данных. В соответствии с этой классификацией измерения делятся на прямые, косвенные, совместные и совокупные.

Косвенное измерение

Косвенное измерение - измерение, при котором искомое значение величины находится на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям.

·         сопротивление <http://ru.wikipedia.org/wiki/%D0%AD%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B5_%D1%81%D0%BE%D0%BF%D1%80%D0%BE%D1%82%D0%B8%D0%B2%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5> резистора <http://ru.wikipedia.org/wiki/%D0%A0%D0%B5%D0%B7%D0%B8%D1%81%D1%82%D0%BE%D1%80> находим на основании закона Ома <http://ru.wikipedia.org/wiki/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD_%D0%9E%D0%BC%D0%B0> подстановкой значений силы тока и напряжения, получаемых в результате прямых измерений. (Проводим прямое измерение напряжения, проводим прямое измерение тока, потом на основании полученных ДВУХ чисел получаем косвенное "измерение" сопротивления)

Замечания (касается РФ)

Проблема данного определения в том, что под такую трактовку понятия "Косвенного измерения" попадают любые программные расчеты на ЭВМ. Это не гипотетическая ситуация - ВНИИМС выпустил соответсвующие МИ 2955-2010,МИ3290-2010,МИ3286. МИ 2955-2010 это "Типовая методика аттестации программного обеспечения средств измерений". Теперь, все программное обеспечение АИИС (автоматизированные информационно-измерительные системы), обрабатывающее результаты измерений считается выполняющим "косвенные (или совокупные) измерения" и тебует фиксации, аттестации, поверки. Под "фиксацией" в данных методиках испытаний (МИ) понимают расчет контрольных сумм файлов, и при любых изменениях контрольных сумм необходимо переповерять и переаттестовывать систему. Под подобную трактовку попадают любые программы, связанные с расчетами за электроэнергию, газ, воду, тепло и т.д. Естественно, поверку и аттестацию предполагается выполнять не бесплатно.

Совместное измерение

Совместное измерение - одновременное измерение нескольких неодноименных величин, для нахождения зависимости между ними. При этом решается система уравнений.

·         определение зависимости сопротивления <http://ru.wikipedia.org/wiki/%D0%AD%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B5_%D1%81%D0%BE%D0%BF%D1%80%D0%BE%D1%82%D0%B8%D0%B2%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5> от температуры <http://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BC%D0%BF%D0%B5%D1%80%D0%B0%D1%82%D1%83%D1%80%D0%B0>. При этом измеряются неодноименные величины, по результатам измерений определяется зависимость.

·         определение зависимости тока от напряжения: меняем напряжение, и смотрим, как при этом меняется ток, проводим соответствующие измерения меняющихся напряжения и тока, получаем зависимость тока от напряжения, а потом определяем, что это за зависимость, и все ее параметры.

Совокупное измерение

Совокупное измерение - это проведение ряда измерений (чаще всего прямых, но, вообще-то, измерения из ряда могут быть любыми - вспомните, как получаются сложные функции в математике) нескольких величин одинаковой размерности в различных сочетаниях, после чего искомые значения величин находятся решением системы уравнений. Число уравнений при этом должно быть равно числу измерений.

·         измерение сопротивления резисторов, соединённых треугольником. При этом измеряется значение сопротивления между вершинами. По результатам определяются сопротивления резисторов.

·         определение масс гирь набора гирь (1, 2, 2, 5) кг с использованием одной эталонной гири 1 кг и компаратора масс ("весов", предназначенных для определения разности масс двух грузов). Компарируют, например:

эталон с гирей 1 кг из набора; - эталон + гирю 1 кг из набора с гирей 2 кг из набора; - эталон + гирю 1 кг из набора с другой гирей 2 кг из набора; - гири 1 + 2 + 2 кг из набора с оставшейся гирей 5 кг из набора.

 

Методы измерений

 

Точность измерений зависит от точности применяемого средства, применяемого метода и от воздействия внешних факторов. Под методикой выполнения измерений понимают совокупность методов, средств, процедур, условий подготовки и проведения измерений, а также правил обработки результатов при выполнении конкретных измерений. Основной законодательной базой является закон «Об обеспечении единства измерений»: «Необходимо при измерении пользоваться аттестованными в установленном порядке методиками».

Разработка методик должна включать:

. Анализ технических требований к точности измерений.

. Определение конкретных условий измерений.

. Выбор испытательного и вспомогательного оборудования, а также средств измерений.

. Исследование влияния условий проведения измерений и подготовки объектов к измерению.

. Определение порядка подготовки средств измерения к работе, последовательности и количества измерений.

. Разработку или выбор алгоритма обработки результатов и правил оформления результатов.

Методики измерений отражены в следующей нормативно-технической документации: государственные стандарты или методические указания, отраслевые методики (ОСТ), стандарты предприятий и организаций (СТП, СТО). В нормативно-технической документации на методики предусматриваются: нормы точности, специфика измеряемой величины, уровень автоматизации, правила обработки данных и т. д. Методики выполнения измерений перед их вводом в действие должны быть аттестованы или стандартизированы. При аттестации необходимо учитывать все факторы, влияющие на точность измерений, устанавливающие достоверность результатов. Аттестацию проводят государственные или ведомственные службы.

Аттестация включает в себя:

. Разработку и утверждение программы аттестации.

. Выполнение исследований в соответствии с программой.

. Составление и оформление отчёта.

. Оформление аттестата методики выполнения измерений.

 



Поделиться:


Последнее изменение этой страницы: 2020-03-14; просмотров: 52; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.143.239.231 (0.015 с.)