Випробування на Вплив лінійного навантаження 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Випробування на Вплив лінійного навантаження



 

Випробування проводять для перевірки працездатності виробів під дією лінійного навантаження і після нього. Випробування відбувається на спеціальних стендах – центрифугах, що створюють в горизонтальній площині радіально направлене прискорення. Частота обертання (хв-1) платформи центрифуги

 

,

 

де а – лінійне (відцентрове) прискорення, g; R – відстань від осі обертання до геометричного центру виробу або його центру тяжіння, см.

Випробуваний виріб розміщують на столі центрифуги таким чином, щоб розкид прискорень малогабаритного виробу відносно його центру тяжіння не перевищував ±10% прискорення в центральній точці, а для ІМ з габаритними розмірами більше 100 мм цей розкид може складати від -10 до +30%. Випробування проводять без електричного навантаження. Це пояснюється великими похибками, що вносяться в контролюючий вихідний сигнал при передачі його через струмозйомник центрифуги. Якщо ІМ випробується при електричному навантаженні, то необхідно контролювати такі параметри, за змінами яких можна судити при стійкості до впливу лінійного прискорення виробу в цілому. Тривалість випробування визначається значенням лінійного прискорення. При випробуванні з прискоренням до 500 g тривалість випробування складає 3 хв в кожному напрямку, а при прискоренні більше 500g – 1 хв. Для встановлення заданого прискорення змінюють частоту обертання або відстань R від осі обертання, переміщуючи випробуваний виріб вздовж осі платформи.

 

1 – кожух; 2 – колектор; 3 - електродвигун; 4 – затискний пристрій; 5 – стіл; 6 – кришка; 7 – вал; 8 – барабан; 9 – електромагніт.

Рисунок 3.5 – Конструкція центрифуги

 

Основні характеристики центрифуги – максимальне прискорення, вантажопідйомність, число струмопроводів.

Конструкція центрифуги Ц 1/150 показана рис.3.5. Стіл 5 представляє собою диск діаметром 570 мм, закріплений в верхній частині валу 7, на якій насаджені також барабан 8, що виконує роль шківу і гальмівного пристрою, і колектор 2. Вал встановлений на двох підшипниках. Всередині валу проходять 24 проводи, кінці яких під’єднанні до колектору і штепсельним роз’їмом, що розміщений біля затискних пристроїв 4. В останніх кріплять печатні плати з випробувальними виробами. Від кожної печатної плати прокладений джгут із 12 проводів, які через штепсельний роз’їм з’єднані з проводами, що йдуть від колектору. В кожусі 1 над валом є отвір для підключення тахометру. До нижнього валу підключають тахогенератор, що служить датчиком частоти обертання. Ротор центрифуги приводиться до обертання електродвигуном 3 постійного струму, а для його гальмування служить електромагніт 9. живлення на електродвигун подається з пульту управління, а на випробуваний вирів – від блоку живлення через колектор. Доступ до столу центрифуги здійснюється через кришку 6. Колектор також закритий кришкою. Обидві кришки мають блокування. Так як вироби кріпляться завжди на одній і тій самій відстані від центру, прискорення залежить тільки від частоти обертання ротору.

В процесі розгону центрифуги окрім відцентрових сил, що визначають лінійне прискорення, виникають сили інерції, що повідомляють об’єкту випробування дотичні прискорення, які відсутні в реальних умовах експлуатації. Дотичні прискорення, що оказують додаткові впливи на вихідні параметри дослідних ІМ, можуть привести до спотворення результатів випробування. Тому час розгону або гальмування центрифуги повинен відповідати умові

 

 або ,

 

де R – відстань від осі обертання до контрольної точки (центру тяжіння випробуваного виробу), см; а – лінійне прискорення, g; n – частота обертання платформи центрифуги, хв-1.

Основний елемент центрифуги – слідкуючий привід, що перетворює вхідний сигнал (напругу) двигуна в кутову швидкість валу. Контролюючи частоту n обертання в контрольній точці

 

 

Так як радіус вимірюється від центру тяжіння випробуваного виробу, то для виробів більших розмірів і для центрифуги з малим радіусом столу лінійне прискорення значно змінюється упродовж виробу. Ця зміна, обумовлена різністю навантаження між двома точками, що розміщені упродовж радіусу стола центрифуги, є градієнт лінійного прискорення

 

 

де R 1 і R 2 (R 2 > R 1) – радіуси двох контрольованих точок випробуваного виробу.

Для точного випробування великих виробів стіл центрифуги має бути більшого діаметру, ніж розміри випробуваного виробу.

Пристрій для кріплення виробу повинен бути достатньо жорстким і допускати проведення випробувань в трьох взаємоперпендикулярних напрямках. Центри тяжіння повинні співпадати з центром тяжіння столу.

Для вимірювання частоти обертання найбільше розповсюдження отримали електронні тахометри з генератором постійного і змінного струму, імпульсні і стробоскопічні. Тахометри з генератором постійного струму використовують для вимірювання частоти обертання з точністю ±(1…5)%. Тахометри з генератором змінного струму використовують для підвищення точності вимірювань. Імпульсні і стробоскопічні тахометри служать для вимірювання великих частот обертання.

 

Вплив підвищеної вологості

Процес випробування

Випробування проводять для встановлення вологостійкості ІМ. Розрізняють два види випробувань: тривале і прискорене. Тривале випробування здійснюють з метою визначення спроможності виробів зберігати свої параметри при тривалому впливі вологості і після його закінчення; прискорене випробування – с метою оперативного виявлення грубих технологічних дефектів в серійному виробництві і дефектів, які могли виникнути в попередніх випробуваннях.

Обидва види випробувань можуть бути проведені в циклічному (з конденсацією вологи) і безперервному (без конденсації вологи) режимах. Конкретний режим випробування встановлюють в залежності від зазначення і умов експлуатації ІМ. Циклічний режим випробування характеризується впливом підвищеної вологості при циклічному вимірюванні температури повітря в камері. Зазвичай його використовують для випробування виробів усіх класів, що не мають ущільненого кожуху, які повинні зберігати працездатність в умовах роси. При випробуванні на вологостійкість в циклічному режимі вироби піддають впливу циклів, тривалість кожного з яких складає 24 години. Число циклів встановлюють в залежності від ступеня жорсткості випробування, визначуваною конструкцією і зазначенням випробуваних приладів. Кожен цикл можна поділити на три етапи (рис.3.6). На першому температура в камері поступово підвищують до верхнього значення, вказаного в НТД. Рекомендована температура прискорених випробувань (55±2)0С, відносна вологість не менше 95%, за виключенням останніх 15 хв (не менше 90%).

 

Рисунок 3.5 – Етапи зміни відносної вологості ζ і температури t оточуючого середовища в циклічному режимі прискореного випробування виробів:  год – час, в продовж якого не допускається конденсація вологи в виробах; I – кінець підйому температури; II – початок падіння температури

 

Підвищення температури і вологості необхідно проводити достатньо швидко, щоб забезпечити конденсацію вологи на виробах. Для виникнення конденсації температура поверхні зразків повинна бути нижче точки роси повітря в камері.

На другому етапі випробування підтримують верхнє значення температури в продовж 12 год. ± 30 хв з початку циклу. Відносна вологість повинна складати (93±3)% за виключенням перших 15 хв, коли її значення повинно знаходитися між 90 і 100%. На третьому етапі випробування температуру в камері знижують до (25±3)0С за час від 3 до 6 год. Відносна вологість при цьому повинна бути не менше 95%, за виключенням перших 15 хв (не менше 90%). Допускається замість природного охолодження виробу в камері, де проводились випробування при верхньому значенні температури, переносити вироби із цієї камери в камеру із зниженою температурою, причому час переносу не повинен перевищувати 15 хв.

При зниженні температури в камері волога може проникати всередину виробів через різні мікроканали в зварних і паяних швах. Фізичний механізм цього явища полягає в наступному. При зниженні температури в камері повітря у внутрішній порожнині випробуваного виробу охолоджується і тиск в ній зменшується. Через перепад тисків в оточуючому середовищі і всередині порожнини волога дифундує по капілярам всередину порожнини корпусу. Тому випробування на вологостійкість в циклічному режимі може бути рекомендовано для виробів, що мають вільні внутрішні порожнини.

В безперервному режимі випробування не передбачена конденсація вологи на виробах, тому безперервне випробування проводять при постійних значеннях температури і вологості в камері. Час витримки при заданій температурі визначається часом досягнення теплової рівноваги. Потім відносну вологу повітря в камері підвищують до (95±3)% і далі підтримують це значення (як і значення температури) постійним в продовж всього часу випробування.

Методики проведення прискореного випробування виробів в безперервному і циклічному режимах аналогічні. Тривалість випробувань встановлюється в залежності від ступеня жорсткості. По закінченню прискореного випробування вироби витримують в нормальних умовах впродовж 1…2 год., тоді як по закінченню тривалого випробування – не менше 24 год.

Випробування при електричному навантаженні передбачається в тому випадку, якщо вплив вологи в умовах експлуатації виробів під напругою може призвести до електрохімічної корозії. В якості навантаження при такому випробуванні служить напруга, що забезпечує мінімальне виділення тепла в випробуваних виробах. В більшості випадків випробування на вологостійкість проводять без електричного навантаження. Параметри виробів вимірюють в кінці випробування (при циклічному режимі – на останньому циклі в кінці останньої години витримки при верхньому значенні температури), не виймаючи їх з камери вологості.

 

Камери тепла і вологи

Камери тепла і вологи, що використовуються для проведення випробування на вологостійкість, відрізняються габаритними розмірами, точністю підтримки режиму, діапазоном характеристик. Так, камери, призначені для відтворення циклічного режиму випробування, повинні забезпечувати циклічну зміну температури в межах заштрихованих областей на рис.3.5. камери, призначені для відтворення безперервного режиму, повинні підтримувати режим випробування в робочому об’ємі в межах ±3% нормованого значення вологості і ±20С нормованого значення температури. Враховуючи, що незначні зміни температури супроводжуються значними коливаннями відносної вологості, слід застосовувати камери з точністю регулювання температури за сухим термометром ±40С, а за вологим – від +0.4 до -0.20С. Зниження температури більш ніж на 0.50С при високій відносній вологості і підвищеній температурі може призвести до випадіння роси, що є недоліком камери.

Якщо на стелі і на стінках камери утворюються краплі конденсованої вологи, то вони не повинні потрапляти на дослідні вироби. Для цього над виробами слід встановлювати двоскатний навіс із некорозійного матеріалу, а самі вироби розміщати в камері таким чином, щоб краплі конденсованої води не потрапляли з одних виробів на інші. Стінки камери і деталі, що знаходяться всередині неї, повинні бути стійкі до корозійного впливу вологи, що утворюється в камері. Камера КТВ-0.4-155, схема якої зображена на рис.3.6 може працювати в ручному і автоматичному режимах.

 

1 – «сухий» термометр опору; 2 – «мокрий» термометр опору; 3 – чохол з батисту; 4, 10 - вентилятори; 5, 6, 18, 25 – платинові термометри опору; 7, 15 – нагрівачі; 8 – змійовик; 9 – заслінка; 11, 12, 19 – соленоїдні вентилі; 13, 14 – датчики нижнього та верхнього рівнів води; 16 – паровий зволожувач; 17, 20, 27, 28 - електронні мости; 21 – корисний об’єм камери; 22 – простір між стінками камери для циркуляції повітря; 23 – паропровід; 24 – склянка підпитки; 26 - резервуар з дистильованою водою.

Рисунок 3.6 – Схема камери тепла і вологи КТВ-0.4-155


Позитивна температура в камері утворюється в результаті теплообміну між повітрям, що знаходиться в корисному об’ємі 21, і нагрітим повітрям, що циркулює в просторі 22 між її стінками. Для примусової циркуляції повітря служить вентилятор 10, а для кращого теплообміну і вирівнювання температури шляхом перемішування повітря в корисному об’ємі камери – вентилятор 4.

Температура повітря регулюється електронним мостом 20, датчиками температури, в якості яких застосовують платинові термометри опору 6 і 25, встановлені відповідно поблизу від нагрівача 7 і в протилежному куті камери. Регулювання відбувається за середнім значенням температур в цих точках.

Повітря, що циркулює муж стінками камери, нагрівається нагрівачем 7. Для охолодження повітря (при перевищенні заданої температури) слугують заслінка 9 і змійовик 8, через який при відкриванні соленоїдного вентиля 11 попускається вода. Подавання напруги на нагрівач, соленоїдний вентиль і електромагніт, що керує заслінкою, виконується електронним мостом 20 через виконавчі реле і контактори. Контроль і безперервний запис температури в камері виконується електронним мостом 28, датчиком температури для якого є платиновий термометр опору 5. За його показниками вмикаються світлова і звукова сигналізація при перевищенні заданої температури, наприклад, у випадку безперервності системи управління нагрівачами або охолодженням.

Для створення необхідної відносної вологості використовується паровий зволожувач 16, представляє собою бак з водою, що нагрівається нагрівачем 15. Рівень води в зволожувачі регулюється соленоїдним вентилем 12, що управляється датчиком нижнього 13 і верхнього 14 рівнів, а температура води – електронним мостом 17 за допомогою термометра опору 18. Відносна вологість регулюється електронним мостом 27, в плечі якого увімкнені датчики – термометри опору: «сухий» 1 і «мокрий» 2. На термометр 2 надітий чохол 3 із батисту, який змочується дистильованою водою, для чого його нижній кінець опущений в склянку підпитки 24, з’єднаний трубкою з резервуаром 26, в якому знаходиться дистильована вода. Батист повинен бути завжди чистим, м’яким і вологим.

Камера може працювати в режимах тепла і підвищеної відносної вологості. В режимі підвищеної відносної вологості на електронному мості 27 встановлюють стрілку задатчика на потрібну відносну вологість, а стрілку задатчика електронного мосту 17 – на відмітку 100…1100С. Коли камера вийде на заданий режим температури, вмикають перемикач «подача пари». Із зволожувача 16 пара поступає в камеру по трубопроводу 23 через соленоїдний вентиль 19, що керується електронним мостом 27. В результаті камера виходить на потрібний режим відносної вологості.

Для вимірювання електронних параметрів дослідних ІМ в камері передбачені вводи, розраховані на напругу до 5000В. Крім того, для подачі, напруг живлення в камері є отвори діаметром 80 мм, через які пропускають кабелі від вимірювальної апаратури. Перед тим на кабелі надівають пробки з теплоізолюючого матеріалу з малим волого поглинанням (пінопласт, фторопласт), які потім щільно вставляють в отвори. Щілини між кабелями і пробками і між пробками і отворами в камері заливають герметиком.

Для вимірювання вологи повітря і газів використовують гігрометри. Найбільш розповсюджені – психрометри. Принцип їх дії оснований на залежності вологи повітря від психометричної різниці. Психрометри застосовують для вимірювання вологи в широкому діапазоні температур (10…2000С). Вони дозволяють проводити градуювання не за вологістю, а за температурою, що підвищує точність вимірювань.



Поделиться:


Последнее изменение этой страницы: 2020-03-02; просмотров: 129; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.133.121.160 (0.017 с.)