Работа в случае пропадания одной фазы 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Работа в случае пропадания одной фазы



Режимы работы

Асинхронный двигатель, согласно принципу обратимости электрических машин, может работать как в двигательном, так и в генераторном режимах. Для работы асинхронного двигателя в любом режиме требуется источник реактивной мощности.

В двигательном режиме при подключении двигателя к трехфазной сети переменного тока в обмотке статора образуется вращающееся магнитное поле, под действием которого в короткозамкнутой обмотке ротора наводятся токи, образующие электромагнитный момент вращения, стремящийся провернуть ротор вокруг его оси. Ротор преодолевает момент нагрузки на валу и начинает вращаться, достигая подсинхронной скорости (она же и будет номинальной с учетом момента нагрузки на валу двигателя).

В генераторном режиме при наличии источника реактивной мощности, создающего поток возбуждения, асинхронная машина способна генерировать активную мощность.

Режимы работы (подробно)

Пуск - вектор результирующего магнитное поля статора равномерно вращается с частотой питающей сети, делённой на количество отдельных обмоток каждой фазы (в простейшем случае - по одной). Таким образом, через любое сечение ротора проходит магнитный поток, изменяющийся во времени по синусу. Изменение магнитного потока в роторе порождает в его обмотках ЭДС. Так как обмотки замкнуты накоротко и сделаны из проводника большого сечения ("беличье колесо"), ток в обмотках ротора достигает значительных величин и, в свою очередь, создаёт магнитное поле. Так как ЭДС в обмотках пропорциональна скорости изменения магнитного потока (то есть - производной по времени от синусной зависимости - косинусу), наведённая ЭДС беличьего колеса и соответственно результирующее магнитное поле (вектор) ротора на 90 градусов "опережает" вектора статора (если смотреть на направления векторов и направление их вращения). Взаимодействие магнитных полей создаёт вращающий момент ротора.

Электроэнергия, подводимая к электродвигателю в режиме пуска и полного торможения, тратится на перемагничивание ротора и статора, а также на активное сопротивление току в обмотке ротора. (Эквивалентно работе понижающего трансформатора с коротким замыканием вторичной обмотки).

Холостой ход - после начала движения, с увеличением оборотов ротора, его скорость относительно вектора магнитного поля статора будет уменьшаться. Соответственно будет уменьшаться и скорость изменения магнитного потока через (любое) сечение ротора, соответственно уменьшится наведённая ЭДС и результирующий магнитный момент ротора. В отсутствие сил сопротивления (идеальный холостой ход) угловая скорость ротора будет равна угловой скорости магнитного поля статора, соответственно разница скоростей, наведённая ЭДС и результирующее магнитное поле ротора будут равны нулю.

Электроэнергия, подводимая к электродвигателю в режиме холостого хода, не потребляется (индуктивная нагрузка). Эквивалентно работе понижающего трансформатора на холостом ходу (или короткозамкнутыми вторичными обмотками, расположенными вдоль сердечника)

Двигательный режим - среднее между полным торможением и холостым ходом. Полезная нагрузка и механические потери не позволяют ротору достичь скорости магнитного поля статора, возникающее их относительное скольжение наводит некоторую ЭДС и соответствующее магнитное поле ротора, которое своим взаимодействием с полем статора компенсирует тормозной момент на валу.

Механическая характеристика асинхронного двигателя является "жёсткой", то есть при незначительном уменьшении оборотов крутящий момент двигателя возрастает очень сильно - "стремится поддерживать номинальные обороты". Это хорошее свойство для приводов, требующих поддержания заданной скорости независимо от нагрузки (транспортёры, погрузчики, подъёмники, вентиляторы).

Электроэнергия, подводимая к электродвигателю в двигательном режиме, потребляется (частью, обозначаемой "косинус фи") на совершение полезной работы и нагрев двигателя, остальная часть возвращается в сеть как индуктивная нагрузка. "Косинус фи" зависит от нагрузки на двигатель, на холостом ходу он близок к нулю. В характеристике двигателя указывается "косинус фи" для номинальной нагрузки.

Генераторный режим возникает при принудительном увеличении оборотов выше "идеального холостого хода". При наличии источника реактивной мощности, создающего поток возбуждения, магнитное поле ротора наводит ЭДС в обмотках статора и двигатель превращается в источник активной мощности (электрической).

Способы соединения обмоток

· Звезда - начала всех обмоток соединяются вместе и соединяются с "нулем" подводимого напряжения. Концы обмоток подключаются к "фазам" трёхфазной сети. На схеме изображения обмоток напоминают звезду (катушки по радиусу направлены из центра).

· Треугольник - начало одной обмотки соединяется с концом следующей - по кругу. Места соединения обмоток подключаются к "фазам" трёхфазного напряжения. "Нулевого" выхода такая схема не имеет. На схеме обмотки соединены в треугольник.

Схемы не имеют особых преимуществ друг перед другом, однако "звезда" требует большего фазового напряжения, чем "треугольник" (для работы в номинальном режиме). Поэтому в характеристике трёхфазного двигателя указывают два номинальных напряжения через дробь (как правило, это 220/380 или 127/220 вольт).

Работающие по схеме "звезда" двигатели можно соединять в "треугольник" на время пуска (для снижения пускового тока) посредством специальных пусковых реле.

Начала и концы обмоток выведены на колодку "два на три" вывода так, что:

· для соединения в "звезду" требуется соединить весь один ряд из трёх выводов - это будет центр ("ноль"), остальные выводы подключаются к фазам.

· для соединения в "треугольник" требуется соединить попарно все три ряда по два провода и подключить их к фазам.

Для смены направления вращения трехфазного электродвигателя необходимо поменять местами любые две фазы из трех в месте подключения питания к двигателю.

Работа в однофазной сети

Может работать в однофазной сети с потерей мощности (не нагруженный на номинальную мощность). При этом для запуска необходим механический сдвиг ротора, либо фазосдвигающая цепь, которая обычно строится или из ёмкости или из индуктивности или из трансформатора.

При однофазном запуске на одну из обмоток подаётся напряжение (ток) через ёмкость или индуктивность, которая сдвигает фазу тока:

- вперёд на 90° - при включении в цепь емкости,

- назад на 90° - при включении в цепь индуктивности,

(без учёта потерь). После запуска напряжение с фазосдвигающей обмотки можно снять.

В некоторых случаях, при питании от однофазной сети, запуск осуществляется вручную проворотом ротора. После проворота ротора двигатель работает самостоятельно.

Трёхфазный двигатель приспособлен к трёхфазной сети, а к однофазной сети лучше подходит двухфазный двигатель со сдвигом фазы во второй обмотке либо через конденсатор (конденсаторные двигатели), либо через индуктивность.

Электрозащита

Для защиты двигателей от пропадания и перекоса (разницы напряжений) фаз питающего напряжения применяют реле контроля фаз, которые в этих случаях полностью отключают питание (с автоматическим или ручным дальнейшим включением). Возможна установка одного реле на группу двигателей.

Более грубой и универсальной защитой, обязательной по правилам эксплуатации и обычно достаточной при правильно подобранных параметрах, является установка трёхфазных автоматических выключателей (по одному на двигатель), которые отключают питание в случае длительного (до несколько минут) превышения номинального тока по любой из фаз, что является следствием перегрузки двигателя, перекоса или обрыва фаз.

 

Общие сведения.

 

Всякий асинхронный трехфазный двигатель рассчитан на два номинальных напряжения трехфазной сети 380 /220 - 220/127 и т. д. Наиболее часто встречаются двигатели 380/220В. Переключение двигателя с одного напряжения на другое производится подключением обмоток «на звезду» - для 380 В или на «треугольник» - на 220 В. Если у двигателя имеется колодка подключения, имеющая 6 выводов с установленными перемычками, следует обратить внимание в каком порядке установлены перемычки. Если у двигателя отсутствует колодка и имеются 6 выводов - обычно они собраны в пучки по 3 вывода. В одном пучке собраны начала обмоток, в другом концы (начала обмоток на схеме обозначены точкой).

 

 


В данном случае «начало» и «конец» - понятия условные, важно лишь чтобы направления намоток совпадали, т. е. на примере «звезды» нулевой точкой могут быть как начала, так и концы обмоток, а в «треугольнике» - обмотки должны быть соединены последовательно, т. е. конец одной с началом следующей. Для правильного подключения на «треугольник» нужно определить выводы каждой обмотки, разложить их попарно и подключить по след. схеме:

 

 

Если развернуть эту схему, то будет видно, что катушки подключены «треугольником».

Если у двигателя имеется только 3 вывода, следует разобрать двигатель: снять крышку со стороны колодки и в обмотках найти соединение трёх обмоточных проводов (все остальные провода соединены по 2). Соединение трёх проводов является нулевой точкой звезды. Эти 3 провода следует разорвать, припаять к ним выводные провода и объединить их в один пучок. Таким образом мы имеем уже 6 проводов, которые нужно соединить по схеме треугольника. Если имеется 6 выводов, но не объединены в пучки и не имеется возможности определить начала и концы. можно посмотреть здесь.

Трехфазный двигатель вполне успешно может работать и в однофазной сети, но ждать от него чудес при работе с конденсаторами не приходится. Мощность в самом лучшем случае будет не более 70% от номинала, пусковой момент сильно зависит от пусковой емкости, сложность подбора рабочей емкости при изменяющейся нагрузке. Трехфазный двигатель в однофазной сети это компромис, но во многих случаях это является единственным выходом. Существуют формулы для рассчета емкости рабочего конденсатора, но я считаю их не корректными по следующим причинам: 1. Рассчет производится на номинальную мощность, а двигатель редко работает в таком режиме и при недогрузке двигатель будет греться из-за лишней емкости рабочего конденсатора и как следствие увеличенного тока в обмотке. 2. Номинальная емкость конденсатора указаная на его корпусе отличается от фактической + /- 20%, что тоже указано не конденсаторе. А если измерять емкость отдельного конденсатора, она может быть в два раза большей или на половину меньшей. Поэтому я предлагаю подбирать емкость к конкретному двигателю и под конкретную нагрузку, измеряя ток в каждой точке треугольника, стараясь максимально выравнять подбором емкости. Поскольку однофазная сеть имеет напряжение 220 В, то двигатель следует подключать по схеме «треугольник». Для запуска ненагруженного двигателя можно обойтись только рабочим конденсатором.

 

.


Направление вращения двигателя зависит от подключения конденсатора (точка а) к точке б или в.
Практически ориентировочную ёмкость конденсатора можно определить по сл. формуле: C мкф = P Вт /10,

 
где C – ёмкость конденсатора в микрофарадах, P – номинальная мощность двигателя в ваттах. Для начала достаточно, а точная подгонка должна производиться после нагрузки двигателя конкретной работой. Рабочее напряжение конденсатора должно быть выше напряжения сети, но практика показывает, что успешно работают старые советские бумажные конденсаторы рассчитаные на 160В. А их найти значительно легче, даже в мусоре. У меня мотор на сверлилке работает с такими конденсаторами, расположеными для защиты от хлопка в заземленной коробке от пускателя не помню сколько лет и пока все цело. Но к такому подходу я не призываю, просто информация для размышления. Кроме того, если включить 160и Вольтовые конденсаторы последовательно, вдвое потеряем в емкости зато рабочее напряжение увеличится вдвое 320В и из пар таких конденсаторов можно собрать батарею нужной емкости.
Включение двигателей с оборотами выше 1500 об/мин, либо нагруженных в момент пуска, затруднено. В таких случаях следует применить пусковой конденсатор, ёмкость которого зависит от нагрузки двигателя, подбирается экспериментально и ориентировочно может быть от равной рабочему конденсатору до в 1,5 – 2 раза большей. В дальнейшем, для понятности, все что относится к работе будет зеленого цвета, все что относится к пуску будет красного, что к торможению синего.

 

Включать пусковой конденсатор в простейшем случае можно при помощи нефиксированной кнопки.

Для автоматизации пуска двигателя можно применить реле тока. Для двигателей мощностью до 500 Вт подойдёт реле тока от стиральной машины или холодильника с небольшой переделкой. Т. к. конденсатор остаётся заряженным и в момент повторного запуска двигателя, между контактами возникает довольно сильная дуга и серебряные контакты свариваются, не отключая пусковой конденсатор после пуска двигателя. Чтобы этого не происходило, следует контактную пластинку пускового реле изготовить из графитовой или угольной щётки (но не из медно-графитовой, т. к. она тоже залипает). Также необходимо отключить тепловую защиту этого реле, если мощность двигателя превышает номинальную мощность реле.

Если мощность двигателя выше 500 Вт, до 1,1кВт можно перемотать обмотку пускового реле более толстым проводом и с меньшим количеством витков с таким расчётом, чтобы реле отключалось сразу же при выходе двигателя на номинальные обороты.

Для более мощного двигателя можно изготовить самодельное реле тока, увеличив размеры оригинального. Переделка реле тока.
Большинство трехфазных двигателей мощностью до трех кВт хорошо работают и в однофазной сети за исключением двигателей с двойной беличьей клеткой, из наших это серия МА, с ними лучше не связываться, в однофазной сети они не работают.

 

Режимы работы

Асинхронный двигатель, согласно принципу обратимости электрических машин, может работать как в двигательном, так и в генераторном режимах. Для работы асинхронного двигателя в любом режиме требуется источник реактивной мощности.

В двигательном режиме при подключении двигателя к трехфазной сети переменного тока в обмотке статора образуется вращающееся магнитное поле, под действием которого в короткозамкнутой обмотке ротора наводятся токи, образующие электромагнитный момент вращения, стремящийся провернуть ротор вокруг его оси. Ротор преодолевает момент нагрузки на валу и начинает вращаться, достигая подсинхронной скорости (она же и будет номинальной с учетом момента нагрузки на валу двигателя).

В генераторном режиме при наличии источника реактивной мощности, создающего поток возбуждения, асинхронная машина способна генерировать активную мощность.

Режимы работы (подробно)

Пуск - вектор результирующего магнитное поля статора равномерно вращается с частотой питающей сети, делённой на количество отдельных обмоток каждой фазы (в простейшем случае - по одной). Таким образом, через любое сечение ротора проходит магнитный поток, изменяющийся во времени по синусу. Изменение магнитного потока в роторе порождает в его обмотках ЭДС. Так как обмотки замкнуты накоротко и сделаны из проводника большого сечения ("беличье колесо"), ток в обмотках ротора достигает значительных величин и, в свою очередь, создаёт магнитное поле. Так как ЭДС в обмотках пропорциональна скорости изменения магнитного потока (то есть - производной по времени от синусной зависимости - косинусу), наведённая ЭДС беличьего колеса и соответственно результирующее магнитное поле (вектор) ротора на 90 градусов "опережает" вектора статора (если смотреть на направления векторов и направление их вращения). Взаимодействие магнитных полей создаёт вращающий момент ротора.

Электроэнергия, подводимая к электродвигателю в режиме пуска и полного торможения, тратится на перемагничивание ротора и статора, а также на активное сопротивление току в обмотке ротора. (Эквивалентно работе понижающего трансформатора с коротким замыканием вторичной обмотки).

Холостой ход - после начала движения, с увеличением оборотов ротора, его скорость относительно вектора магнитного поля статора будет уменьшаться. Соответственно будет уменьшаться и скорость изменения магнитного потока через (любое) сечение ротора, соответственно уменьшится наведённая ЭДС и результирующий магнитный момент ротора. В отсутствие сил сопротивления (идеальный холостой ход) угловая скорость ротора будет равна угловой скорости магнитного поля статора, соответственно разница скоростей, наведённая ЭДС и результирующее магнитное поле ротора будут равны нулю.

Электроэнергия, подводимая к электродвигателю в режиме холостого хода, не потребляется (индуктивная нагрузка). Эквивалентно работе понижающего трансформатора на холостом ходу (или короткозамкнутыми вторичными обмотками, расположенными вдоль сердечника)

Двигательный режим - среднее между полным торможением и холостым ходом. Полезная нагрузка и механические потери не позволяют ротору достичь скорости магнитного поля статора, возникающее их относительное скольжение наводит некоторую ЭДС и соответствующее магнитное поле ротора, которое своим взаимодействием с полем статора компенсирует тормозной момент на валу.

Механическая характеристика асинхронного двигателя является "жёсткой", то есть при незначительном уменьшении оборотов крутящий момент двигателя возрастает очень сильно - "стремится поддерживать номинальные обороты". Это хорошее свойство для приводов, требующих поддержания заданной скорости независимо от нагрузки (транспортёры, погрузчики, подъёмники, вентиляторы).

Электроэнергия, подводимая к электродвигателю в двигательном режиме, потребляется (частью, обозначаемой "косинус фи") на совершение полезной работы и нагрев двигателя, остальная часть возвращается в сеть как индуктивная нагрузка. "Косинус фи" зависит от нагрузки на двигатель, на холостом ходу он близок к нулю. В характеристике двигателя указывается "косинус фи" для номинальной нагрузки.

Генераторный режим возникает при принудительном увеличении оборотов выше "идеального холостого хода". При наличии источника реактивной мощности, создающего поток возбуждения, магнитное поле ротора наводит ЭДС в обмотках статора и двигатель превращается в источник активной мощности (электрической).

Способы соединения обмоток

· Звезда - начала всех обмоток соединяются вместе и соединяются с "нулем" подводимого напряжения. Концы обмоток подключаются к "фазам" трёхфазной сети. На схеме изображения обмоток напоминают звезду (катушки по радиусу направлены из центра).

· Треугольник - начало одной обмотки соединяется с концом следующей - по кругу. Места соединения обмоток подключаются к "фазам" трёхфазного напряжения. "Нулевого" выхода такая схема не имеет. На схеме обмотки соединены в треугольник.

Схемы не имеют особых преимуществ друг перед другом, однако "звезда" требует большего фазового напряжения, чем "треугольник" (для работы в номинальном режиме). Поэтому в характеристике трёхфазного двигателя указывают два номинальных напряжения через дробь (как правило, это 220/380 или 127/220 вольт).

Работающие по схеме "звезда" двигатели можно соединять в "треугольник" на время пуска (для снижения пускового тока) посредством специальных пусковых реле.

Начала и концы обмоток выведены на колодку "два на три" вывода так, что:

· для соединения в "звезду" требуется соединить весь один ряд из трёх выводов - это будет центр ("ноль"), остальные выводы подключаются к фазам.

· для соединения в "треугольник" требуется соединить попарно все три ряда по два провода и подключить их к фазам.

Для смены направления вращения трехфазного электродвигателя необходимо поменять местами любые две фазы из трех в месте подключения питания к двигателю.

Работа в однофазной сети

Может работать в однофазной сети с потерей мощности (не нагруженный на номинальную мощность). При этом для запуска необходим механический сдвиг ротора, либо фазосдвигающая цепь, которая обычно строится или из ёмкости или из индуктивности или из трансформатора.

При однофазном запуске на одну из обмоток подаётся напряжение (ток) через ёмкость или индуктивность, которая сдвигает фазу тока:

- вперёд на 90° - при включении в цепь емкости,

- назад на 90° - при включении в цепь индуктивности,

(без учёта потерь). После запуска напряжение с фазосдвигающей обмотки можно снять.

В некоторых случаях, при питании от однофазной сети, запуск осуществляется вручную проворотом ротора. После проворота ротора двигатель работает самостоятельно.

Трёхфазный двигатель приспособлен к трёхфазной сети, а к однофазной сети лучше подходит двухфазный двигатель со сдвигом фазы во второй обмотке либо через конденсатор (конденсаторные двигатели), либо через индуктивность.

Работа в случае пропадания одной фазы

Запуск возможен только в случае соединения обмоток "звездой" с подключением нулевого провода (что не является обязательным для работы). Если нагрузка не позволит двигателю запуститься и развить номинальные обороты, то из-за увеличения тока в обмотках и уменьшения охлаждения он выйдет из строя через несколько минут (перегрев, пробой изоляции и короткое замыкание).

Продолжение работы будет при любом типе соединения обмоток, но так как при этом перестаёт поступать примерно треть энергии (напряжения), то продолжительная работа возможна только при загрузке двигателя не более чем на 60-70%. При большей (номинальной) нагрузке увеличение тока в работающих фазах неминуемо вызовет перегрев обмоток с дальнейшим пробоем изоляции и коротким замыканием. Это одна из частых причин преждевременного выхода из строя асинхронных двигателей.

Электрозащита

Для защиты двигателей от пропадания и перекоса (разницы напряжений) фаз питающего напряжения применяют реле контроля фаз, которые в этих случаях полностью отключают питание (с автоматическим или ручным дальнейшим включением). Возможна установка одного реле на группу двигателей.

Более грубой и универсальной защитой, обязательной по правилам эксплуатации и обычно достаточной при правильно подобранных параметрах, является установка трёхфазных автоматических выключателей (по одному на двигатель), которые отключают питание в случае длительного (до несколько минут) превышения номинального тока по любой из фаз, что является следствием перегрузки двигателя, перекоса или обрыва фаз.

 



Поделиться:


Последнее изменение этой страницы: 2019-12-14; просмотров: 127; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 52.14.240.178 (0.038 с.)