Виброакустическая маскировка 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Виброакустическая маскировка



 

Виброакустическая маскировка заключается в создании маскирующих акустических и вибрационных помех средствам разведки. Акустическая маскировка эффективна для защиты речевой информации от утечки по всем каналам, вибрационная – только по виброакустическому.

В настоящее время создано большое количество различных систем активной виброакустической маскировки, успешно используемых для подавления средств перехвата речевой информации. К ним относятся: системы «Заслон», «Барон», «Порог-2М», «Фон-В», «Шорох», VNG-006, ANG-2000, NG-101, «Эхо» и т.д.

Для формирования виброакустических помех применяются специальные генераторы на основе электровакуумных, газоразрядных и полупроводниковых радиоэлементов. На практике наиболее широкое применение нашли генераторы шумовых колебаний. Наряду с шумовыми помехами в целях активной акустической маскировки используют «Речеподобные» помехи, хаотические последовательности импульсов и т.д.

Роль оконечных устройств, осуществляющих преобразование электрических колебаний в акустические колебания речевого диапазона частот, обычно выполняют малогабаритные широкополосные акустические колонки, а осуществляющих преобразование электрических колебаний в вибрационные - вибрационные излучатели. Акустические колонки систем зашумления устанавливаются в салоне в местах наиболее вероятного размещения средств акустической разведки, а вибрационные излучатели крепятся на стеклах. В состав типовой системы виброакустической маскировки входят шумогенератор и от 6 до 12...25 вибрационных излучателей (пьезокерамических или электромагнитных).

При организации акустической маскировки необходимо помнить, что акустический шум может создавать дополнительный мешающий для владельца автомобиля фактор (дискомфорт) и раздражающе воздействовать на нервную систему человека, вызывая различные функциональные отклонения, приводить к быстрой утомляемости. Степень влияния мешающих помех определяется санитарными нормативами на величину акустического шума. В соответствии с нормами для учреждений величина мешающего шума не должна превышать суммарный уровень 45 дБ [5].

В системах акустической и виброакустической маскировки используются шумовые, "Речеподобные" и комбинированные помехи. Наиболее часто из шумовых используются следующие виды помех[2]:

- «белый» шум (шум с постоянной спектральной плотностью в речевом диапазоне частот);

- «розовый» шум (шум с тенденцией спада спектральной плотности 3 дБ на октаву в сторону высоких частот);

- шум с тенденцией спада спектральной плотности 6 дБ на октаву в сторону высоких частот;

- шумовая «речеподобная» помеха (шум с огибающей амплитудного спектра, подобной речевому сигналу).

В системах акустической и виброакустической маскировки, как правило, используются помехи типа «белого» и «розового» шумов.

В ряде систем виброакустической маскировки возможна регулировка уровня помехового сигнала. Например, в системе ANG-2000 осуществляется ручная плавная регулировка уровня помехового сигнала, а в системе «Заслон-2М» – автоматическая (в зависимости от уровня маскируемого речевого сигнала). В комплексе "Барон" возможна независимая регулировка уровня помехового сигнала в трех частотных диапазонах (центральные частоты: 250, 1000 и 4000 Гц). Система «Шорох-1» позволяет регулировать форму генерируемой помехи пятиполосным октавным эквалайзером [3].

«Речеподобные» помехи формируются (синтезируются) из речевых сигналов. При этом возможно формирование помехи, как из скрываемого сигнала, так и из некоррелированных со скрываемым сигналом речевых фрагментов (отрезков). Характерным представителем помех, формируемых из речевых фрагментов, некоррелированных со скрываемым сигналом, является помеха типа «речевой хор». Такая помеха формируются путем смешения фрагментов речи нескольких человек (дикторов). Среди помех, формируемых из скрываемого сигнала, можно выделить два типа: «речеподобную» реверборационную и «речеподобную» инверсионную. «Речеподобная» реверборационная помеха формируется из фрагментов скрываемого речевого сигнала путем многократного их наложения с различными уровнями. «Речеподобная» инверсионная помеха формируется из скрываемого речевого сигнала путем сложной инверсии его спектра.

Комбинированные помехи формируются путем смешения различного вида помех, например помех типа «речевой хор» и «белый» шум, «Речеподобные» реверборационной и инверсионной помех и т.п. «Речеподобная» помеха типа «речевой хор» и комбинированная помеха типа «речевой хор» и «белый» шум реализованы в комплексе «Барон». Для этих целей в его состав кроме обычного генератора шума включены три радиоприемника, независимо настраиваемые на различные радиовещательные станции FM (УКВ-2) диапазона.

«Речеподобная» комбинированная (реверборационная и инверсионная) помеха используется в системе акустической маскировки «Эхо». Помеха формируется путем многократного наложения смещенных на различное время задержек разноуровневых сигналов, получаемых путем умножения и деления частотных составляющих скрываемого речевого сигнала.

Оценка эффективности шумовых помех осуществляется инструментально-расчетным методом, подробно изложенным в [5] и обеспечивающим требуемую достоверность получаемых результатов оценки. Данный метод основан на результатах экспериментальных исследований, проведенных Н.Б. Покровским [6].

Спектр речи разбивается на N частотных полос. Для каждой частотной полосы на среднегеометрической частоте  определяется формантный параметр , характеризующий энергетическую избыточность дискретной составляющей речевого сигнала. Для каждой -й частотной полосы определяется весовой коэффициент , характеризующий вероятность наличия формант речи в данной полосе[5]:

 

 

 

где  и  - значения весового коэффициента для верхней и нижней граничной частот -й частотной полосы спектра речевого сигнала.

Для каждой частотной полосы на среднегеометрической частоте определяется коэффициент восприятия формант слуховым аппаратом человека , представляющий собой вероятное относительное количество формантных составляющих речи, имеющих уровни интенсивности выше порогового значения, которое зависит от отношения сигнал/шум .

Далее определяется спектральный индекс артикуляции (понимаемости) речи  (информационный вес -й спектральной полосы частотного диапазона речи) и рассчитывается интегральный индекс артикуляции речи R[5]:

 

 
 

 

По интегральному индексу артикуляции речи определяются слоговая и словесная разборчивость речи. Зависимости , , ,  и  определены Н. Б. Покровским экспериментально и представлены в виде графиков в [7]. Данные графики можно аппроксимировать следующими аналитическими выражениями, при которых ошибка аппроксимации составляет менее 1% [5]:

 

 

 
 
 

 

где

– значение весового коэффициента в i-й октавной полосе;

– отношение "уровень речевого сигнала/уровень шума" в месте измерения в i-й октавной полосе, дБ;

– средний спектральный уровень речевого сигнала в месте измерения в i-й октавной полосе, дБ;

– уровень шума (помехи) в месте измерения в i-й октавной полосе, дБ;

– значение формантного параметра спектра речевого сигнала в i-й октавной полосе, дБ;

N – количество октавных вопрос, в которых проводится измерение.

Числовые значения формантного параметра спектра речевого сигнала D Аi и весового коэффициента кi в октавных полосах приведены в табл. 3.1.

 

Таблица 3.2

Числовые значения формантного параметра спектра речевого сигнала D Аi и весового коэффициента кi в октавных полосах

 

Наименование параметров

Среднегеометрические частоты октавных полос fcp.i, Гц

250 500 1000 2000 4000
Числовое значение формантного параметра спектра речевого сигнала в октавной полосе D Аi, дБ 18 14 9 6 5
Числовое значение весового коэффициента в октавной полосе кi 0,03 0,12 0,20 0,30 0,26

                                                                                                                                               

Требования, предъявляемые к эффективности защиты акустической (речевой) информации, в качестве показателя оценки которой наиболее часто используют словесную разборчивость W.

 

 

 

 

Для оценки разборчивости речи речевой диапазон целесообразно разбивать на полосы имеющие одинаковый весовой коэффициент (вносящих одинаковый вклад в разборчивость речи). Покровским было предложено разбивать речевой диапазон частот на двадцать равноартикуляционных полос с весовым коэффициентом 0.05.

Для простоты используют не двадцать, а семь октавных полос. Погрешность в расчетах при таком количестве полос значительно зависит от вида шума и при словесной разборчивости 30-80% составляет 1-2% для «речеподобной» помехи, 3-5% - для «белого» и «розового» шума и 15% - для шума с тенденцией спада спектральной плотности 6 дБ на октаву в сторону высоких частот[5].

Характеристики октавных полос и рассчитанные числовые значения формантного параметра спектра речевого сигнала и весовых коэффициентов для них представлены в таблице 3.3.

 

 

Таблица 3.3 – Характеристики октавных полос частотного диапазона речи

 

Номер полосы Частотные границы полосы , Гц Среднегеометрическая частота полосы , Гц Весовой коэффициент полосы Значение формантного параметра речи в полосе , дБ
1 90-180 125 0.01 25
2 180-355 250 0,03 18
3 355-710 500 0,12 14
4 710-1400 1000 0,2 9
5 1400-2800 2000 0,3 6
6 2800-5600 4000 0,26 5
7 5600-11200 8000 0.07 4

 

Первая и седьмая октавные полосы являются малоинформативными, поэтому обычно ограничиваются рассмотрением пяти октавных полос со среднегеометрическими частотами 250, 500, 1000, 2000, 4000. Погрешность при таком рассмотрении не превышает 1-2 % для «белого» и «розового» шумов и 4-5% - для «речеподобной» помехи и шума с тенденцией спада спектральной плотности на 6 дБ на октаву в сторону высоких частот.

Результаты математического моделирования зависимости словесной разборчивости от интегрального отношения сигнал/шум в пяти октавных полосах (180-5600 Гц) при различном виде шумовых помех представлены на рисунке 3.4.

 

1 – «белый» шум; 2 – «розовый» шум; 3 – шум со спадом спектральной плотности 6 дБ на октаву в сторону высоких частот; 4 – шумовая «речеподобная» помеха

 

Рисунок 3.4 – Зависимость словесной разборчивости W от интегрального отношения сигнал/шум q в полосе частот 180-5600 Гц;

 

Критерии эффективности защиты речевой информации во многом зависят от целей, преследуемых при организации защиты, например:

· скрыть смысловое содержание;

· скрыть тематику разговора и т.д.

Процесс восприятия речи в шуме сопровождается потерями составных элементов речевого сообщения. Понятность речевого сообщения характеризуется количеством правильно принятых слов, отражающих качественную область понятности, которая выражена в категориях подробности справки о перехваченном разговоре.

Выделяют несколько уровней оценки качества перехваченной информации[3]:

1. Перехваченное речевое сообщение содержит количество правильно понятых слов, достаточное для составления подробной справки о содержании перехваченного разговора;

2. Перехваченное речевое сообщение содержит количество правильно понятых слов, достаточное только для составления краткой справки-аннотации, отражающей предмет, проблему, цель и общий смысл перехваченного разговора;

3. Перехваченное речевое сообщение содержит отдельные правильно понятые слова, позволяющие установить предмет разговора;

4. При прослушивании фонограммы перехваченного речевого сообщения возможно установить факт наличия речи, но нельзя установить предмет разговора.

Практический опыт показывает, что составление подробной справки о содержании перехваченного разговора невозможно при словесной разборчивости менее 60 – 70 %, а краткой справки-аннотации – при словесной разборчивости менее 40 – 50 %. При словесной разборчивости менее 20 – 30 % значительно затруднено установление даже предмета ведущегося разговора[2].

Ниже в таблице 3.4 приведены значения отношения сигнал/шум в октавных полосах, при которых словесная разборчивость составляет 20%, 30% и 40%.

 

 

Таблица 3.4- Значения отношений сигнал/шум, при которых обеспечивается требуемая эффективность защиты акустической информации[5].

Вид помехи

Словесная разборчивость W, %

Отношение с/ш qi в октавных полосах

Отношение с/ш в полосе частот 180…5600 Гц

250 500 1000 2000 4000

«Белый» шум

20 +0,8 -2,2 -10,7 -18,2 -24,7 -10
30 +3,1 +0,1 -8,4 -15,9 -22,4 -7,7
40 +5,1 +2,1 -6,4 -13,9 -20,4 -5,7

«Розовый» шум

20 -5,9 -5,9 -11,4 -15,9 -19,4 -8,8
30 -3,7 -3,7 -9,2 -13,7 -17,2 -6,7
40 -1,9 -1,9 -7,4 -11,9 -15,4 -4,9

Шум со спадом спектральной плотности 6 дБ на октаву

20 -14,1 -11,1 -3,6 -15,1 15,6 -13,0
30 -12,0 -9,0 -11,5 -13,0 -13,5 -10,8
40 -10,0 -7,2 -9,7 -11,2 -11,7 -9,0

Шумовая «речеподобная» помеха

20 -3,9 -7,9 -12,9 -15,9 -16,9 -9,0
30 -1,7 -5,7 -10,7 -13,7 -14,7 -6,8
40 +0,1 -3,9 -8,9 -11,9 -12,9 -5,0

 

По результатам, приведенным в таблице 3.4 видно, что наиболее эффективным является «розовый» шум и шумовая «речеподобная» помеха. При их использовании для скрытия тематики разговора необходимо обеспечить превышение уровня помех над уровнем скрываемого сигнала в точке возможного размещения датчика на 8,8 и 9 дБ соответственно. Для «белого» шума и шума со спадом спектральной плотности 6 дБ на октаву это значение составляет 10 и 13 дБ.

Все приведенные выше расчеты позволяют определить защищенность одного канала, однако при оценке защищенности объекта необходимо учитывать комплексность применения способов и средств разведки, а также совместную обработку данных поступающих из разных источников. Применительно к подслушиванию можно ожидать, что аппаратурой разведки будет вестись регистрация речевых сигналов несколькими различными датчиками, а данные, поступающие по различным каналам, могут в ходе совместной обработки использоваться для повышения разборчивости перехватываемой речи. Таким образом может сложиться ситуация, что при выполнении норматива по защищенности каждого отдельного канала, разборчивость на основании всех каналов получится выше нормативной. Для оценки суммарной разборчивости при использовании независимых каналов можно воспользоваться следующим выражением[6]:

 

 

Где  - разборчивость по совокупности каналов;

   - разборчивость в отдельном -ом канале;

 - число статистически независимых каналов утечки.

Таким образом, если злоумышленник будет иметь в своем распоряжении 3 статистически независимых канала со словесной разборчивостью 0.2, то при обработке данных полученных из этих каналов он будет обладать информацией с разборчивостью 0,49.

В этом случае требования к значению разборчивости в каждом отдельном канале будут равны[6]:

 

 

 

При данном подходе определения состояния безопасности речевой информации ужесточаются требования к разборчивости речи. Так для достижения суммарной разборчивости в 20% необходимо обеспечить разборчивость по каждому каналу мене 5% при двух каналах и менее 2.5% при трех.

Основываясь на данных таблицы 3.4, необходимо подобрать генератор виброакустического зашумления для обеспечения активной защиты в салоне автомобиля. Так как защищаемый объект – салон автомобиля, генератор шума должен обладать возможностью питания от батареек.

Необходимо, что бы генератор шума обеспечивал необходимое отношение сигнал/шум во всех октавных полосах. Ввиду отсутствия возможности провести инструментальные измерения, в данном проекте приведены расчетные данные.

Для выбора генератора виброакустического зашумления необходимо выяснить уровень фонового шума. В качестве фона выбираем уровень шума на тихой улице без движения транспорта. Уровень шума вне салона автомобиля будет равен 30…35 дБ[7]. Среднее значение звукоизоляции для одинарного стекла и герметичной металлической двери равны 30 дБ[7]. Таким образом, учитывая внимание, которое уделяют производители автомобилей их шумоизоляции, можно сказать, что уровень внешних шумов в салоне автомобилей равен 0 дБ.

В качестве возможных решений можно предложить следующие приборы:

1. Генератор акустического шума WNG-023. Предназначен для защиты переговоров от прослушивания в замкнутых пространствах (тамбур, салон автомобиля, небольшие кабинеты и пр.) за счет генерации «белого» шума в акустическом диапазоне частот, что обеспечивает снижение разборчивости после записи или передачи по каналу связи. Технические характеристики приведены в таблице 3.5

Таблица 3.5 – Технические характеристики WNG-023.

Диапазон частот 100-12000Гц
Максимальная выходная мощность 1 Вт
Габариты 111x70x22 мм
Питание 220/9 В

Самым простым методом получения белого шума является использование шумящих электронных элементов (ламп, транзисторов, различных диодов) с усилением напряжения шума. Принципиальная схема несложного генератора шума приведена на рис 3.5.

 

рис 3.5 Генератор шума

 

Источником шума является полупроводниковый диод - стабилитрон VD1 типа КС168, работающий в режиме лавинного пробоя при очень малом токе. Сила тока через стабилитрон VD1 составляет всего лишь около 100 мкА. Шум, как полезный сигнал, снимается с катода стабилитрона VD1 и через конденсатор С1 поступает на инвертирующий вход операционного усилителя DA1 типа КР140УД1208. На не инвертирующий вход этого усилителя поступает напряжение смещения, равное половине напряжения питания с делителя напряжения выполненного на резисторах R2 и R3. Режим работы микросхемы определяется резистором R5, а коэффициент усиления - резистором R4. С нагрузки усилителя, переменного резистора R6, усиленное напряжение шума поступает на усилитель мощности, выполненный на микросхеме DA2 типа К174ХА10. С выхода усилителя шумовой сигнал через конденсатор С4 поступает на малогабаритный широкополосный громкоговоритель В1. Уровень шума регулируется резистором R6.

Стабилитрон VD1 генерирует шум в широком диапазоне частот от единиц герц до десятков мегагерц. Однако на практике он ограничен АЧХ усилителя и громкоговорителя. Стабилитрон VD1 подбирается по максимальному уровню шума, так как стабилитроны представляют собой некалиброванный источник шума. Он может быть любым с напряжением стабилизации менее напряжения питания.

Для получения калиброванного по уровню шума генератора используют специальные шумящие вакуумные диоды. Спектральная плотность мощности генерируемого шума пропорциональна анодному току диода. Широкое распространение получили шумовые диоды двух типов 2ДЗБ и 2Д2С. Первый генерирует шума полосе до 30 МГц, а второй - до 600 МГц. Принципиальная схема генератора шума на шумящих вакуумных диодах приведена на рис 3.6.

 

рис 3.6 Генератор шума на вакуумной лампе.

 



Поделиться:


Последнее изменение этой страницы: 2020-03-14; просмотров: 137; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.117.183.172 (0.066 с.)