Значения коэффициента пульсации светового потока 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Значения коэффициента пульсации светового потока



Измеренные значения коэффициента пульсации, Кп, %

Однофазное включение ламп

Разнофазное включение

3 лампы 2 лампы 1 лампа 3 лампы 2 лампы 1 лампа
           

 

17. Перевести переключатель системы включения ламп, для изучения стробоскопического эффекта, в положение «3-х фазное включение».

Проконтролировать полученный эффект, по вращающемуся диску, стробоскопический эффект в этом случае пропадает или значительно уменьшается.

Диск вращается также по часовой стрелке, а темные риски вращаются без искажения в том же направлении.

Причина – суммарный световой поток, создаваемый темя лампами. Каждая фаза трехфазной сети сдвинута на 120 градусов поэтому суммарный световой поток более сглажен.

18. Поднести фотоэлемент люксметра к стеклу стенда и произвести отсчет коэффициента пульсации. Занести результат в таблицу.

19. Поочередно выключить соответствующими тумблерами люминесцентные лампы № 1 — № 2 стенда, измеряя коэффициент пульсации с 2-мя и 1-ой лампами.

20. Переключатель системы включения ламп для изучения стробоскопического эффекта поставить в нейтральное положение, а выключатели ламп и двигателя вращения диска – выключить.

21. Привести рабочее место в исходное состояние.

В произвольной форме описать явление стробоскопиче­ского эффекта при различных схемах включения и методы его ликвидации. Графически показать изменение светового потока во времени Ф = f(t) в зависимости от синусоидального изменения тока i = φ(t), питающего лампы. Графики выполнить для одной лампы. А также для двух и трех ламп, включенных в разные фазы трехфазной сети.

 

 

Лабораторная работа  “ Производственный шум ”

Цель работы – изучить характеристики, основы измере­ний и методику санитарно-гигиенической оценки производ­ственного шума при проведении аттестации рабочих мест

 

ПРИНЯТЫЕ ОБОЗНАЧЕНИЯ

 

ИШ – источник шума;
ПС – предельный спектр;
СКЗ – среднее квадратическое значение;
УЗД – уровень звукового давления;
f в – верхняя граничная частота октавной полосы;
f Н – нижняя граничная частота октавной полосы;
f СГ – среднегеометрическая частота октавной по­лосы;
Р – мгновенное значение звукового давления, Па;
Р 0 – пороговая величина звукового давления, Па;
дБ – децибел (десятая часть бела), единица измерения уровня звукового давления;
дБА – децибел «А» – величина, полученная с применением частотной характеристики «А» шумомера;
L Р – уровень звукового давления, дБ;
LIN – уровень звукового давления, измеренный шумомером без применения частотной коррекции;
L А – уровень звука, дБА (на характеристике «А»);
L ЭКВ – эквивалентный уровень звука, дБА;
L ОКТ – октавный уровень звукового давления, дБ;
Lt – поправка на время действия шума, дБ (дБА);
L (AI)max – уровень звука, измеренный на характеристике IMPULS шумомера

Цель работы – изучить характеристики, основы измере­ний и методику санитарно-гигиенической оценки производ­ственного шума при проведении аттестации рабочих мест.

 

1.

ОСНОВНЫЕ ПОЛОЖЕНИЯ

Характеристика шума

Под шумом понимают звук или комплекс звуков, раздра­жающе действующих на человека и/или мешающих восприя­тию полезных сигналов. Физиологически шум определяется реакцией организма на звуки. Установлено, что диапазон частот колебаний звуковых волн, воспринимаемых ухом человека, находится в пределах 16–20 000 Гц. Звук с частотой ниже 16 Гц называется инфразвуком, а с частотой выше 20 000 Гц – ультразвуком. С физической точки зрения разницы между шумом и звуком нет. Поэтому встречающиеся на практике шумы мож­но рассматривать как сумму простых гармонических тонов. Распространяясь в атмосфере, звуковые волны возбуждают колебания избыточного давления в точке наблюдения по сравнению с атмосферным. Эти колебания, действуя на ба­рабанную перепонку уха, воспринимаются в виде слышимого звука.

Описанный процесс характеризуется среднеквадратическим значением звукового давления за время Т (рис. 1):

                              ,                          (1)

где p (t)– звуковое давление в момент времени t.

Основными параметрами, харак­теризующими шум в какой-либо точке пространства, явля­ются уровень звукового давления L Р (дБ) и частота f (Гц). Звуковое давление, воспринимаемое ухом человека как звук, лежит в широких пределах: отношение его величины на болевом пороге к давлению на пороге слышимости состав­ляет 106 раз. Такими величинами неудобно пользоваться на практике. В этом заключается одна из причин, почему для измерения звукового давления применяют единицу децибел (дБ) – десятую часть бела.

Рис. 1 Определение среднеквадратического давления

 

Единица бел названа в честь американского ученого А. G. Bell. Величина, выраженная в децибелах, называется уровнем звукового давления и опре­деляется выражением:

                                                             (2)

где p 0 –величиназвукового давления напороге слыши­мости частоты 1000Гц, p 0=2∙10-5 Па.

Единицей частоты колебаний f является герц (Гц), т. е. одно полное колебание в секунду. Принято шум харак­те­ри­зовать зависимостью уровня звукового давления в де­цибелах от частоты. Такое представление называется ча­стотным спектром или просто спектром.

Характер спектра производственного шума определяется максимальным уровнем звукового давления в диапазоне частот:

– до 300 Гц – низкочастотный;

– более 300 Гц до 800 Гц – среднечастотный;

– свыше 800 Гц – высокочастотный.

Говоря о спектре, необходимо указывать ширину частот­ных полос, в которых производилось его определение. При оценке безопасности труда применяется октава. Октава – это такая полоса, верхняя f Ви нижняя f Нграничные часто­ты которой связаны отношением f В/ f Н=2. Полоса пропу­скания характеризуется среднегеометрической частотой f СГ. С учетом приведенного отношения среднегеометрическая ча­стота октавы определяется в виде:

                                 (3)

Значения среднегеометрических частот стандартизовано, поэтому из приведенной последовательности можно определить все частотные характеристики октавной полосы.

Рис. 2 Спектральная характеристика шума

 

По числу октавных полос в спектре шумы разделяют на широкополосные, с непрерывным спектром более одной ок­тавной полосы (такой спектр имеет шум подвижного со­става при движении по бесстыковому пути или водопада) и тональные, когда в шуме слышатся дискретные тона (свист, вой сирены и т. п.). Сопоставление спектров показано на рис. 2.

По временным характеристикам шумы могут быть по­стоянные, УЗД которых за рабочий день (рабочую смену) изменяется не более, чем на 5дБ (дБА), и непостоянные – колеблющиеся во времени, прерывистые и импульсные, раз­ность максимального и минимального уровней которых пре­вышает 5 дБ (дБА).

В отличие от колеблющегося прерывистый шум действует лишь часть рабочего времени, например, в ритме технологи­ческого процесса. Импульсный шум на слух воспринимается как отдельные кратковременные звуки с резким нарастанием и спадом уровня звукового давления, например, работа отбойного молотка, удары.

 

2.

НОРМИРОВАНИЕ ШУМА

 

 

Производственный шум оказывает негативное влияние на организм человека, вызывая перегрузку нервной системы. Повышенные уровни звукового давления приводят к заболеваниям сердечно-сосудистой и эндокринной систем, а так же желудочно-кишечного тракта (гастрит, язвенная болезнь).

Действие повышенных уровней шума на протяжении 10-15 лет может привести к развитию профессионального заболевания – тугоухости. Кроме того, превышение норм шума на рабочем месте оператора приводит к снижению внимания и повышенной утомляемости, что сказывается на надежности выполняемых им операций – растет число ошибок. Естественной защитой от вредного действия шума организм не обладает!

Вредность шума как фактора производственной среды диктует необходимость ограничивать его уровни на рабочих местах. Ограничение (нормирование) в зависимости от ха­рактера шума осуществляется методом предельных спектров и/или методом уровня звука.

 

Рис. 3 Вид некоторых предельных спектров

 

Метод предельных спектров. Предельным спектром (ПС) называется совокупность безопасных значений УЗД на сред­негеометрических частотах 31,5; 63; 125; 250; 500; 1000; 2000; 4000 и 8000 Гц. Графически предельный спектр представляет­ся плавной кривой, которая характеризует «равновредность» указанных совокупностей (рис. 3). Применяется этот метод для нор­мирования постоянного шума.

Каждому предельному спектру присваивается номер, численно равный уровню зву­кового давления в октавной полосе этого спектра с частотой f сг =1000 Гц. Например, ПС-55 означает, что данному спектру соответствует уровень звукового давления (УЗД) равный 55 дБ на среднегеометрической частоте 1000 Гц. Описание рабочих мест и соответствующие им предельные спектры приведены в приложении 1.

Таблица 1



Поделиться:


Читайте также:




Последнее изменение этой страницы: 2019-08-18; просмотров: 271; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.151.106 (0.011 с.)