Определение понятия «ткань». Тканевые элементы. Классификация тканей 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Определение понятия «ткань». Тканевые элементы. Классификация тканей



Ткань – это возникшая в процессе эволюции система клеток и неклеточных структур, объединённых общностью строения и выполняемых функций (желательно определение знать наизусть и понимать значение: 1) ткань возникла в процессе эволюции, 2) это система клеток и неклеточных структур, 3) имеется общность строения, 4) система клеток и неклеточных структур, которые входят в состав данной ткани, имеют общие функции).

Структурно-функциональные элементы тканей подразделяются на: гистологические элементы клеточного (1) и неклеточного типа (2). Структурно-функциональные элементы тканей человеческого организма можно сравнить с разными нитками, из которых состоят ткани текстильные.

Гистологический препарат «Гиалиновый хрящ»: 1 — клетки хондроциты, 2 — межклеточное вещество (гистологический элемент неклеточного типа)

1. Гистологические элементы клеточного типа обычно являются живыми структурами с собственным метаболизмом, ограниченные плазматической мембраной, и представляют собой клетки и их производные, возникшие в результате специализации. К ним относятся:

а) Клетки – главные элементы тканей, определяющие их основные свойства;

б) Постклеточные структуры, в которых утеряны важнейшие для клеток признаки (ядро, органоиды), например: эритроциты, роговые чешуйки эпидермиса, а также тромбоциты, которые являются частями клеток;

в) Симпласты – структуры, образованные в результате слияния отдельных клеток в единую цитоплазматическую массу с множеством ядер и общей плазмолеммой, например: волокно скелетной мышечной ткани, остеокласт;

г) Синцитии – структуры, состоящие из клеток, объединенных в единую сеть цитоплазматическими мостиками вследствие неполного разделения, например: сперматогенные клетки на стадиях размножения, роста и созревания.

2. Гистологические элементы неклеточного типа представлены веществами и структурами, которые вырабатываются клетками и выделяются за пределы плазмолеммы, объединенными под общим названием «межклеточное вещество» (тканевой матрикс). Межклеточное вещество обычно включает в себя следующие разновидности:

а) Аморфное (основное) вещество – представлено бесструктурным скоплением органических (гликопротеины, гликозоаминогликаны, протеогликаны) и неорганических (соли) веществ, находящихся между клетками ткани в жидком, гелеобразном или твердом, иногда кристаллизованном состоянии (основное вещество костной ткани);

б) Волокна – состоят из фибриллярных белков (эластин, различные виды коллагена), часто образующих в аморфном веществе пучки разной толщины. Среди них различают: 1) коллагеновые, 2) ретикулярные и 3) эластические волокна. Фибриллярные белки участвуют также в формировании капсул клеток (хрящи, кости) и базальных мембран (эпителии).

2. Классификация тканей. В соответствии с морфофункциональной классификацией тканей различают: 1) эпителиальные ткани, 2) ткани внутренней среды: соединительные и кроветворные, 3) мышечные и 4) нервную ткань.

3. Развитие тканей. Теория дивергентного развития тканей по Н.Г. Хлопину предполагает, что ткани возникли в результате дивергенции — расхождения признаков в связи с приспособлением структурных компонентов к новым условиям функционирования. Теория параллельных рядов по А.А. Заварзину описывает причины эволюции тканей, согласно которой ткани, выполняющие сходные функции, имеют сходное строение. В ходе филогенеза одинаковые ткани возникали параллельно в разных эволюционных ветвях животного мира, т.е. совершенно разные филогенетические типы первоначальных тканей, попадая в сходные условия существования внешней или внутренней среды, давали сходные морфофункциональные типы тканей. Эти типы возникают в филогенезе независимо друг от друга, т.е. параллельно, у абсолютно разных групп животных при стечении одинаковых обстоятельств эволюции. Эти две взаимодополняющие друг друга теории объединены в единую эволюционнную концепцию тканей (А.А. Браун и П.П. Михайлов), согласно которой сходные тканевые структуры в различных ветвях филогенетического древа возникали параллельно в ходе дивергентного развития.

Как из одной клетки — зиготы образуется такое разнообразие структур? За это отвечают такие процессы как ДЕТЕРМИНАЦИЯ, КОММИТИРОВАНИЕ, ДИФФЕРЕНЦИРОВКА. Попробуем разобраться с этими терминами.

Детерминация – это процесс, определяющий направление развития клеток, тканей из эмбриональных зачатков. В ходе детерминации клетки получают возможность развиваться в определённом направлении. Уже на ранних стадиях развития, когда происходит дробление, появляются два вида бластомеров: светлые и тёмные. Из светлых бластомеров не смогут впоследствии образоваться, например, кардиомиоциты, нейроны, поскольку они детерминированы и их направление развития — эпителий хориона. У этих клеток сильно ограничены возможности (потенции) развиваться.

Ступенчатое, согласованное с программой развития организма, ограничение возможных путей развития вследствие детерминации называется коммитированием. Например, если из клеток первичной эктодермы в двуслойном зародыше ещё могут развиться клетки почечной паренхимы, то при дальнейшем развитии и образовании трёхслойного зародыша (экто-, мезо- и энтодерма) из вторичной эктодермы — только нервная ткань, эпидермис кожи и некоторое другое.

Детерминация клеток и тканей в организме, как правило, необратима: клетки мезодермы, которые выселились из первичной полоски для образования почечной паренхимы обратно превратиться в клетки первичной эктодермы не смогут.

Дифференцировка направлена на создание в многоклеточном организме нескольких структурно-функциональных типов клеток. У человека таких типов клеток более 120. В ходе дифференцировки происходит постепенное формирование морфологических и функциональных признаков специализации клеток тканей (образование клеточных типов).

Дифферон – это гистогенетический ряд клеток одного типа, находящихся на разных этапах дифференцировки. Как люди в автобусе — дети, молодёжь, взрослые, пожилые. Если в автобусе будут перевозить кошку с котятами, то можно сказать, что в автобусе «два дифферона — людей и кошек».

В составе дифферона по степени дифференцировки различают следующие клеточные популяции: а) стволовые клетки - наименее дифференцированные клетки данной ткани, способные делиться и являющиеся источником развития других её клеток; б) полустволовые клетки - предшественники имеют ограничения в способности формировать различные типы клеток, вследствие коммитирования, но способны к активному размножению; в) клетки — бласты, вступившие в дифференцировку но сохраняющие способность к делению; г) созревающие клетки — заканчивающие дифференцировку; д) зрелые (дифференцированные) клетки, которые заканчивают гистогенетический ряд, способность к делению у них, как правило, исчезает, в ткани они активно функционируют; е) старые клетки — закончившие активное функционирование.

Уровень специализации клеток в популяциях дифферона возрастает от стволовых до зрелых клеток. При этом происходят изменения состава и активности ферментов, органоидов клеток. Для гистогенетических рядов дифферона характерен принцип необратимости дифференцировки, т.е. в нормальных условиях переход от более дифференцированного состояния к менее дифференцированному невозможен. Это свойство дифферона часто нарушается при патологических состояниях (злокачественные опухоли).

Пример дифференцировки структур с образованием мышечного волокна (последовательные стадии развития).

Зигота — бластоциста — внутренняя клеточная масса (эмбриобласт) — эпибласт — мезодерма — несегментированная мезодерма — сомит — клетки миотома сомита — миобласты митотические — миобласты постмитотические — мышечная трубочка — мышечное волокно.

В приведённой схеме от этапа к этапу ограничивается количество потенциальных направлений дифференцировки. Клетки несегментированной мезодермы имеют возможности (потенции) к дифференцировке в различных направлениях и образованию миогенного, хондрогенного, остеогенного и других направлений дифференцировки. Клетки миотома сомитов детерминированы к развитию только в одном направлении, а именно к образованию миогенного клеточного типа (поперечнополосатая мышца скелетного типа).

Клеточные популяции – это совокупность клеток организма или ткани, сходных между собой по какому-либо признаку. По способности к самообновлению путём деления клеток выделяют 4 категории клеточных популяций (по Леблону):

- Эмбриональная (быстро делящаяся клеточная популяция) – все клетки популяции активно делятся, специализированные элементы отсутствуют.

- Стабильная клеточная популяция – долгоживущие, активно функционирующие клетки, которые вследствие крайней специализации утратили способность к делению. Например, нейроны, кардиомиоциты.

- Растущая (лабильная) клеточная популяция – специализированные клетки которой способны делиться в определённых условиях. Например, эпителии почки, печени.

- Обновляющаяся популяция состоит из клеток, постоянно и быстро делящихся, а также специализированных функционирующих потомков этих клеток, продолжительность жизни которых ограничена. Например, эпителии кишечника, кроветворные клетки.

К особому типу клеточных популяций относят клон – группа идентичных клеток, происходящих от одной родоначальной клетки-предшественницы. Понятие клон как клеточной популяции часто используется в иммунологии, например, клон Т-лимфоцитов.

4. Регенерация тканей – процесс, обеспечивающий её обновление в ходе нормальной жизнедеятельности (физиологическая регенерация) или восстановление после повреждения (репаративная регенерация).

Камбиальные элементы – это популяции стволовых, полустволовых клеток-предшественников, а также бластных клеток данной ткани, деление которых поддерживает необходимое число ее клеток и восполняет убыль популяции зрелых элементов. В тех тканях, в которых не происходит обновления клеток путем их деления, камбий отсутствует. По распределению камбиальных элементов ткани различают несколько разновидностей камбия:

- Локализованный камбий – его элементы сосредоточены в конкретных участках ткани, например, в многослойном эпителии камбий локализован в базальном слое;

- Диффузный камбий – его элементы рассеяны в ткани, например, в гладкой мышечной ткани камбиальные элементы рассредоточены среди дифференцированных миоцитов;

- Вынесенный камбий – его элементы лежат за пределами ткани и по мере дифференцировки включаются в состав ткани, например, кровь содержит только дифференцированные элементы, элементы камбия находятся в органах кроветворения.

Возможность регенерации ткани определяется способностью ее клеток к делению и дифференцировке или уровнем внутриклеточной регенерации. Хорошо регенерируют ткани, которые имеют камбиальные элементы или представляют собой обновляющиеся или растущие клеточные популяции. Активность деления (пролиферации) клеток каждой ткани при регенерации контролируется факторами роста, гормонами, цитокинами, кейлонами, а также характером функциональных нагрузок.

Помимо тканевой и клеточной регенерации путем деления клеток существует внутриклеточная регенерация — процесс непрерывного обновления или восстановления структурных компонентов клетки после их повреждения. В тех тканях, которые являются стабильными клеточными популяциями и в которых отсутствуют камбиальные элементы (нервная ткань, сердечная мышечная ткань), данный тип регенерации является единственно возможным способом обновления и восстановления их структуры и функции.

Гипертрофия ткани – увеличение ее объема, массы и функциональной активности, — обычно является следствием а) гипертрофии клеток (при неизменном их числе) вследствие усиленной внутриклеточной регенерации; б) гиперплазии – увеличении числа ее клеток путем активации клеточного деления (пролиферации) и (или) в результате ускорения дифференцировки новообразующихся клеток; в) сочетания обоих процессов. Атрофия ткани – снижение ее объема, массы и функциональной активности вследствие а) атрофии ее отдельных клеток вследствие преобладания процессов катаболизма, б) гибели части ее клеток, в) резкого уменьшения скорости деления и дифференцировки клеток.

5. Межтканевые и межклеточные отношения. Ткань поддерживает постоянство своей структурно-функциональной организации (гомеостаз) как единого целого только при условии постоянного влияния гистологических элементов друг на друга (внутритканевые взаимодействия), а также одних тканей на другие (межтканевые взаимодействия). Эти влияния можно рассматривать как процессы взаимного узнавания элементов, образования контактов и обмена информацией между ними. При этом формируются самые различные структурно-пространственные объединения. Клетки в ткани могут находиться на расстоянии и взаимодействовать друг с другом через межклеточное вещество (соединительные ткани), соприкасаться отростками, иногда достигающими значительной длины (нервная ткань), или образовывать плотно контактирующие клеточные пласты (эпителий). Совокупность тканей, объединенных в единое структурное целое соединительной тканью, координированное функционирование которого обеспечивается нервными и гуморальными факторами, образует органы и системы органов целого организма.

Для образования ткани необходимо, чтобы клетки объединились и были связаны между собой в клеточные ансамбли. Способность клеток избирательно прикрепляться друг к другу или к компонентам межклеточного вещества осуществляется с помощью процессов узнавания и адгезии, которые являются необходимым условием поддержания тканевой структуры. Реакции узнавания и адгезии происходят вследствие взаимодействия макромолекул специфических мембранных гликопротеидов, получивших название молекул адгезии. Прикрепление происходит с помощью особых субклеточных структур: а) точечных адгезионных контактов (прикрепление клеток к межклеточному веществу), б) межклеточных соединений (прикрепление клеток друг к другу).

Межклеточные соединения — специализированные структуры клеток, с помощью которых они механически скрепляются между собой, а также создают барьеры и каналы проницаемости для межклеточной коммуникации. Различают: 1) адгезионные клеточные соединения, выполняющие функцию межклеточного сцепления (промежуточный контакт, десмосома, полудесмасома), 2) замыкающие контакты, функция которых — образование барьера, задерживающего даже малые молекулы (плотный контакт), 3) проводящие (коммуникационные) контакты, функция которых состоит в передаче сигналов от клетки к клетке (щелевой контакт, синапс).

6. Регуляция жизнедеятельности тканей. В основе регуляции тканей – три системы: нервная, эндокринная и иммунная. Гуморальные факторы, обеспечивающие межклеточное взаимодействие в тканях и их метаболизм, включают в себя разнообразные клеточные метаболиты, гормоны, медиаторы, а также цитокины и кейлоны.

Цитокины являются наиболее универсальным классом внутри- и межтканевых регуляторных веществ. Они представляют собой гликопротеиды, которые в очень низких концентрациях оказывают влияние на реакции клеточного роста, пролиферации и дифференцировки. Действие цитокинов обусловлено наличием рецепторов к ним на плазмолемме клеток-мишеней. Эти вещества переносятся кровью и обладают дистантным (эндокринным) действием, а также распространяются по межклеточному веществу и действуют локально (ауто- или паракринно). Важнейшими цитокинами являются интерлейкины (ИЛ), факторы роста, колониестимулирующие факторы (КСФ), фактор некроза опухоли (ФНО), интерферон. Клетки различных тканей обладают большим количеством рецепторов к разнообразным цитокинам (от 10 до 10000 на клетку), эффекты которых нередко взаимно перекрываются, что обеспечивает высокую надёжность функционирования этой системы внутриклеточной регуляции.

Кейлоны – гормоноподобные регуляторы пролиферации клеток: тормозят митозы и стимулируют дифференцировку клеток. Кейлоны действуют по принципу обратной связи: при уменьшении количества зрелых клеток (например, потеря эпидермиса при травме) количество кейлонов уменьшается, а деление малодифференцированных камбиальных клеток усиливается, что проводит к регенерации ткани.

 



Поделиться:


Последнее изменение этой страницы: 2019-05-20; просмотров: 630; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.218.70.93 (0.021 с.)