Мембранный потенциал покоя. Гиперполяризация мембраны. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Мембранный потенциал покоя. Гиперполяризация мембраны.



Мембранным потенциалом покоя (МПП) или потенциалом покоя (ПП) называют разность потенциалов покоящейся клетки между внутренней и наружной сторонами мембраны. Внутренняя сторона мембраны клетки заряжена отрицательно по отношению к наружной. Принимая потенциал наружного раствора за нуль, МПП записывают со знаком «минус». Величина МПП зависит от вида ткани и варьирует от -9 до -100 мв. Следовательно, в состоянии покоя клеточная мембрана поляризована. Уменьшение величины МПП называют деполяризацией, увеличение — гиперполяризацией, восстановление исходного значения МПП — реполяризацией мембраны. Основные положения мембранной теории происхождения МПП сводятся к следующему. В состоянии покоя клеточная мембрана хорошо проницаема для ионов К+ (в ряде клеток и для СГ), менее проницаема для Na+ и практически непроницаема для внутриклеточных белков и других органических ионов. Ионы К+ диффундируют из клетки по концентрационному градиенту, а непроникающие анионы остаются в цитоплазме, обеспечивая появление разности потенциалов через мембрану. Возникающая разность потенциалов препятствует выходу К+ из клетки и при некотором ее значении наступает равновесие между выходом К+ по концентрационному градиенту и входом этих катионов по возникшему электрическому градиенту. Мембранный потенциал, при котором достигается это равновесие, называется равновесным потенциалом.

МПП может быть разделен на две компоненты — «ионную» и «метаболическую». Первая компонента зависит от концентрационных градиентов ионов и мембранных проницаемостей для них. Вторая, «метаболическая», обусловлена активным транспортом натрия и калия и оказывает двоякое влияние на МПП. С одной стороны, натриевый насос поддерживает концентрационные градиенты между цитоплазмой и внешней средой. С другой, будучи электрогенным, натриевый насос оказывает прямое влияние на МПП. Вклад его в величину МПП зависит от плотности «насосного» тока (ток на единицу плошади поверхности мембраны клетки) и сопротивления мембраны.

ГИПЕРПОЛЯРИЗАЦИЯ мембраны повышение разности потенциалов между наруж. и внутр. сторонами мембраны живой клетки, находящейся в состоянии физиол. покоя, т. е. повышение потенциала покоя. Пассивная Г. возникает при прохождении через мембрану электрич. тока входящего напряжения (анод — снаружи, катод — внутри). Активная Г. возникает при повышении проницаемости мембраны для ионов К+ или С1. Пример активной Г.— тормозной постсинаптический потенциал.

 

 

Критический уровень деполяризации. Локальный ответ и его свойства.

Критический уровень деполяризации — величина мембранного потенциала, при достижении которой возникает потенциал действия. Критический уровень деполяризации (КУД) - это такой уровень электрического потенциала мембраны возбудимой клетки, от которого локальный потенциал переходит в потенциал действия. В основе этого явления лежит самонарастающее открытие потенциал-управляемых ионных каналов для натрия под действием нарастающей деполяризации. КУД обычно составляет -50 мВ, но бывает разным у разных нейронов и может меняться при изменении возбудимости нейрона. Чем ближе КУД к потенциалу покоя (-70 мВ) и, наоборот, чем ближе потенциал покоя к КУД, тем более возбудимым является нейрон.

Если открываются ионные каналы для хлора (Cl-), то в клетку вместе с ионами хлора попадают отрицательные заряды, и её потенциал смещается вниз ниже потенциала покоя. Это гиперполяризация, и таким способом рождается тормозный локальный потенциал. Можно сказать, что тормозные локальные потенциалы порождаются хлорными ионными каналами.

Нервная клетка реагирует изменениями МП в ответ на раздражающие (в том числе электрические) стимулы либо локальными (подпороговыми) реакциями, либо генерирует ПД.

Локальные ответы. Стимулы, величина которых меньше определённого порога, вызывают локальные ответы, затухающие вблизи места раздражения. Эти локальные ответы могут быть как деполяризующие (возбуждающие) мембрану, так и гиперполяризующие (тормозные). Потенциал действия. Деполяризующие стимулы, достигшие порогового значения, вызывают развитие возбуждения в виде ПД. ПД распространяется по мембране нейрона без затухания (без декремента).

Локальный ответ возникает на допороговые стимулы; распространяется на 1-2 мм с затуханием; возрастает с увеличением силы стимула, т.е. подчиняется закону «силы»; суммируется – возрастает при повторных частых допороговых раздражениях 10 – 40 мВ увеличивается.

 

 

Синаптическая передача возбуждения между клетками. Химич-е и элек-е синапсы.

Передачу возбуждения между нейронами, а также от нейронов к мышечным и секреторным клеткам осуществляют специализированные межклеточные контакты – синапсы. Функцию быстрой передачи возбуждения к нервной клетке и от нее выполняют ее отростки – дендриты и аксоны, т.е. нервные волокна. В зависимости от структуры их делят на мякотные, имеющие миелиновую оболочку, и безмякотные. Эта оболочка формируется шванновскими клетками, являющимися видоизмененными глиальными клетками. Они содержат миелин, который в основном состоит из липидов. Он выполняет изолирующую и трофическую функции. Одна шванновская клетка образует оболочку на 1 мм нервного волокна. Участки, где оболочка прерывистая, т.е. не покрыта миелином, называют перехватами Ранвье. Ширина перехвата 1 мкм. Существуют два способа синаптической передачи – электрический и химический. Возможно и сочетание обоих механизмов, электрического и химического, в одном смешанном синапсе, однако в нервной системе млекопитающих преобладают чисто химические синапсы. В электрических синапсах, количество которых в нервной системе относительно невелико, потенциал действия пресинаптических окончаний обеспечивает ток, который деполяризует постсинаптическую мембрану. Морфологическую основу электрической передачи составляет щелевой контакт, для которого характерны тесное прилегание пре- и постсинаптической мембран, большая площадь контакта этих мембран, наличие ультраструктур, снижающих электрическое сопротивление в области контакта, – своего рода каналов, организованных в ввде правильной сети между пре- и постсинаптической мембраной. Электрофизиологическими критериями электрической синаптической передачи являются: 1) отсутствие синаптической задержки; 2) проведение возбуждения в обоих направлениях; 3) независимость от потенциала пресинаптической мембраны; 4) устойчивость к изменениям концентрации ионов кальция и магния в среде, к асфиксии, низкой температуре, некоторым фармакологическим воздействиям. Функциональная роль электрических синапсов состоит в осуществлении срочной передачи сигналов, обеспечивающей синхронизацию электрической активности группы нейронов, например группы мотонейронов во время прыжковых движений лягушки или плавательных движений рыбы. Электрические синапсы обнаруживаются между нервными клетками, однотипными по структуре и функциям.

Химический механизм синаптической передачи по сравнению с электрическим более эффективно обеспечивает основные функции синапса: 1) одностороннее проведение сигнала; 2) усиление сигнала; 3) конвергенцию многих сигналов на одной постсинаптической клетке, пластичность передачи сигналов.

Химические синапсы передают два вида сигналов – возбуждающий и тормозной. В возбуждающих синапсах нейромедиа-тор, освобождаемый из пресинаптических нервных окончаний, вызывает в постсинаптической мембране возбуждающий пост-синаптический потенциал – локальную деполяризацию, а в тормозных синапсах – тормозной постсинаптический потенциал, как правило, – гиперполяризацию. Снижение сопротивления мембраны, происходящее во время тормозного постсинаптического потенциала, ведет к короткому замыканию возбуждающего постсинаптического тока, тем самым ослабляя или блокируя передачу возбуждения.

 

 



Поделиться:


Последнее изменение этой страницы: 2016-04-08; просмотров: 1909; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.217.144.32 (0.007 с.)