Периферический отдел зрительной системы. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Периферический отдел зрительной системы.



 

Подразделяется на палочковые и колбочковые нейросенсорные клетки. У человека насчитывается 6 – 7 млн колбочек и 110 – 125 млн палочек.

Место выхода зрительного нерва из сетчатки не содержит фоторецепторов и называется слепым пятном. Латерально от слепого пятна в области центральной ямки лежит участок наилучшего видения – желтое пятно, содержащее преимущественно колбочки. К периферии сетчатки число колбочек уменьшается, а число палочек возрастает, и периферия сетчатки содержит одни лишь палочки.

- Палочки являются рецепторами, воспринимающими световые лучи в условиях слабой освещенности, т.е. бесцветное зрение.

- Колбочки функционируют в условиях яркой освещенности и характеризуются разной чувствительностью к спектральным свойствам света, т.е. цветное зрение.

Фоторецепторы обладают очень высокой чувствительностью, полагают, что фоторецепторы возбуждаются при действии на них 1 – 2 квантов света.

Палочки и колбочки состоят из двух сегментов – наружного и внутреннего, которые соединяются между собой посредством узкой реснички.

Фотохимические процессы в сетчатке глаза. В рецепторных клетках сетчатки находятся светочувствительные пигменты (сложные белковые вещества) – хромопротеиды, которые обесцвечиваются на свету. В палочках на мембране наружных сегментов содержится родопси н, в колбочках йодопсин.

Родопсин и йодопсин различаются тем, что максимум поглощения находится в различных областях спектра. Палочки, содержащие родопсин, имеют максимум поглощения в области 500 нм. Среди колбочек различают три типа, которые отличаются максимумами в спектрах поглощения: одни имеют максимум в синей части спектра (430 – 470 нм), другие в зеленой (500 – 530), третьи – в красной (620 – 760 нм) части, что обусловлено наличием трех типов зрительных пигментов. Красный колбочковый пигмент получил название «йодопсин».

Фотохимические процессы в сетчатке протекают весьма экономно. Даже при действии яркого света расщепляется только небольшая часть имеющегося в палочках родопсина (около 0,006 %).

В темноте происходит ресинтез пигментов, протекающий с поглощением энергии. Восстановление йодопсина протекает в 530 раз быстрее, чем родопсина. Если в организме снижается содержание витамина А, то процессы ресинтеза родопсина ослабевают, что приводит к нарушению сумеречного зрения, так называемой куриной слепоте. При постоянном и равномерном освещении устанавливается равновесие между скоростью распада и ресинтеза пигментов. Когда количество света, падающего на сетчатку, уменьшается, это динамическое равновесие нарушается и сдвигается в сторону более высоких концентраций пигмента. Этот фотохимический феномен лежит в основе темновой адаптации.

Особое значение в фотохимических процессах имеет пигментный слой сетчатки, который образован эпителием, содержащим фусцин. Этот пигмент поглощает свет, препятствуя отражению и рассеиванию его, что обусловливает четкость зрительного восприятия.

Вследствие фотохимических процессов в фоторецепторах глаза при действии света возникает рецепторный потенциал, который представляет собой гиперполяризацию мембраны рецептора. Это отличительная черта зрительных рецепторов, активация других рецепторов выражается в виде деполяризации их мембраны. Амплитуда зрительного рецепторного потенциала увеличивается при увеличении интенсивности светового стимула. Так, при действии красного цвета, длина волны которого составляет 620 – 760 нм, рецепторный потенциал более выражен в фоторецепторах центральной части сетчатки, а синего (430 – 470 нм) – в периферической.

Проводящие пути и подкорковые центры зрит.сис-мы.

Зрительные пути:

1) Зрит. нервы – гипоталамус;

2) Зрит. нервы – хиазма – латеральные коленчатые тела таламуса – первичная зрительная кора (17 поле) – вторичная зрительная кора (18 поле) – задневисочная кора;

3) Зрит. нервы – четверохолмие среднего мозга.

Подкорковые (и стволовые) и корковые зрительные центры: латеральное коленчатое тело и подушки зрительного бугра, (зрительная радиация/ лучистость) и верхние холмики крыши среднего мозга (четверохолмия), зрительная кора.

Организация зрительной коры.

Корковый отдел зрительного анализатора расположен в затылочной доле (поля 17, 18, 19 по Бродману). Первичная проекционная область (поле 17) осуществляет специализированную, но более сложную, чем в сетчатке и в наружных коленчатых телах, переработку информации. Рецептивные поля нейронов зрительной коры небольших размеров имеют вытянутые формы, также имеются сложные и сверхсложные рецептивные поля детекторного типа, которые позволяет выделять из цельного изображения лишь отдельные части линий с различным расположением и ориентацией, при этом проявляется способность избирательно реагировать на эти фрагменты.

В каждом участке коры сконцентрированы нейроны, которые образуют колонку, проходящую по глубине через все слои вертикально, при этом происходит функциональное объединение нейронов, выполняющих сходную функцию. Разные свойства зрительных объектов (цвет, форма, движение) обрабатываются в разных частях зрительной коры большого мозга параллельно.

В зрительной коре существуют функционально различные группы клеток – простые и сложные.

Простые клетки создают рецептивное поле, которое состоит из возбудительной и тормозной зон. Определить это можно путем исследования реакции клетки на маленькое световое пятно. Структуру рецептивного поля сложной клетки установить таким путем невозможно. Эти клетки являются детекторами угла, наклона и движения линий в поле зрения.

В одной колонке могут располагаться как простые, так и сложные клетки. В III и IV слоях зрительной коры, где заканчиваются таламические волокна, найдены простые клетки. Сложные клетки расположены в более поверхностных слоях поля 17, в полях 18 и 19 зрительной коры простые клетки являются исключением, там расположены сложные и сверхсложные клетки.

В зрительной коре часть нейронов образует «простые» или концентрические цветооппонентные рецептивные поля (IV слой). Цветовая оппонентность РП проявляется в том, что нейрон, расположенный в центре, реагирует возбуждением на один цвет и тормозится при стимуляции другого цвета.

В простом РП различают две или три параллельно расположенные зоны, между которыми имеется двойная оппонентность: если центральная зона имеет on-ответ на красное освещение и off-ответ на зеленое, то краевые зоны дают off-ответ на красное и on-ответ на зеленое.

Предполагается, что информация, выделенная нейронами первичного зрительного поля 17(V1), далее передается для обработки во вторичную (поле V2) и третичную (поле V3) области зрительной коры.

Однако анализ зрительной информации не завершается в полях стриарной (зрительной) коры (V1, V2, V3). Установлено, что от поля V1 начинаются пути (каналы) к другим областям, в которых производится дальнейшая обработка зрительных сигналов.

Изучение передачи сигналов на разных уровнях зрительной сенсорной системы проводят, регистрируя суммарные вызванные потенциалы (ВП) путем отведения у человека с помощью электродов от поверхности кожи головы в области зрительной коры (затылочная область). У животных можно одновременно исследовать вызываемую активность во всех отделах зрительной сенсорной системы.

 

 

Механизмы цветового зрения.

Цветовое зрение – способность зрительного анализатора реагировать на изменения длины световой волны с формированием ощущения цвета. Определенной длине волны электромагнитного излучения соответствует ощущение определенного цвета. Так, ощущение красного цвета соответствует действию света с длиной волны в 620 – 760 нм, а фиолетового -- 390 – 450 нм, остальные цвета спектра имеют промежуточные параметры.

Смешение всех цветов дает ощущение белого цвета. В результате смешения трех основных цветов спектра – красного, зеленого, сине-фиолетового – в разном соотношении можно получить также восприятие любых других цветов. Ощущение цветов связано с освещенностью. По мере ее уменьшения сначала перестают различаться красные цвета, позднее всех – синие. Восприятие цвета обусловлено в основном процессами, происходящими в фоторецепторах.

Согласно трехкомпонентной теории цветоощущения Ломоносова – Юнга– Гельмгольца–Лазарева, в сетчатке глаза имеются три вида фоторецепторов – колбочек, раздельно воспринимающих красный, зеленый и сине-фиолетовые цвета. Комбинации возбуждения различных колбочек приводят к ощущению различных цветов и оттенков. Равномерное возбуждение трех видов колбочек дает ощущение белого цвета.

Согласно оппонентной теории цветного зрения Эвальда Геринга, в глазу и/или в мозге существуют три оппонентных процесса: один – для ощущения красного и зеленого, второй – для ощущения желтого и синего, третий – для черного и белого. Эта теория применима для объяснения передачи информации о цвете в последующих отделах зрительной системы: ганглиозных клетках сетчатки, наружных коленчатых телах, корковых центрах зрения, где функционируют цветооппонентные РП с их центром и периферией.

Процессы в колбочках более соответствуют трехкомпонентной теории цветоощущения, тогда как для нейронных сетей сетчатки и вышележащих зрительных центров подходит теория контрастных цветов Геринга.

В восприятии цвета определенную роль играют процессы, протекающие в нейронахразных уровней зрительного анализатора (включая сетчатку), которые получили название цветооппонентных нейронов. При действии на глаз излучений одной части спектра они возбуждаются, а другой – тормозятся. Такие нейроны участвуют в кодировании информации о цвете.

 



Поделиться:


Последнее изменение этой страницы: 2016-04-07; просмотров: 317; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.188.218.184 (0.011 с.)