MEMS: микроэлектромеханические системы. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

MEMS: микроэлектромеханические системы.



Микроэлектромеханические системы, МЭМС — технологии и устройства, объединяющие в себе микроэлектронные и микромеханические компоненты. МЭМС-устройства обычно изготавливают на кремниевой подложке с помощью технологии микрообработки, аналогично технологии изготовления однокристальных интегральных микросхем. Типичные размеры микромеханических элементов лежат в диапазоне от 1 микрометра до 100 микрометров, тогда как размеры кристалла МЭМС микросхемы имеют размеры от 20 микрометров до одного миллиметра.

Обычно MEMS делят на два типа: сенсоры – измерительные устройства, которые переводят те или иные физические воздействия в электрический сигнал, и актуаторы (исполнительные устройства) – системы, которые занимаются обратной задачей, то есть переводом сигналов в те или иные действия.

 

Так что соответствующие чипы давно разработаны, выпускаются целым рядом крупных и сравнительно мелких компаний и производятся в таких количествах, что цены давно и надежно сбиты до минимума. Типичный MEMS-акселерометр сегодня обходится в несколько долларов за штуку.

 

На сегодняшний день наиболее популярны датчики движения, основанные на конденсаторном принципе. Подвижная часть системы – классический грузик на подвесах. При наличии ускорения грузик смещается относительно неподвижной части акселерометра. Обкладка конденсатора, прикрепленная к грузику, смещается относительно обкладки на неподвижной части. Емкость меняется, при неизменном заряде меняется напряжение – это изменение можно измерить и рассчитать смещение грузика. Откуда, зная его массу и параметры подвеса, легко найти и искомое ускорение.

 

Это теория. На практике, MEMS-акселерометры устроены таким образом, что отделить друг от друга составные части – грузик, подвес, корпус и обкладки конденсатора – не так-то просто. Собственно, изящество MEMS в том и заключается, что в большинстве случаев в одной детали здесь удается (а вернее, попросту приходится) комбинировать сразу несколько предметов.

Зачастую, современные MEMS-гироскопы устроены идентично акселерометрам. Просто в них значения ускорений по осям пересчитываются в значения углов поворота – конструкция примерно та же, но на выходе другая величина.

 

Однако встречаются и гироскопы, устройство которых "заточено" именно под вращение. Такие MEMS – одни из самых красивых.

 

Помимо конденсаторных датчиков, существуют MEMS-акселерометры, использующие иные принципы. Например, датчики, основанные на пьезоэффекте. Вместо смещения обкладок конденсатора, в акселерометрах такого типа происходит давление грузика на пьезокристалл. Основной принцип тот же, что и в пьезозажигалках – под воздействием деформации пьезоэлемент вырабатывает ток. Из значения напряжения, зная параметры системы, можно найти силу, с которой грузик давит на кристалл – и, соответственно, рассчитать искомое ускорение.

 

Есть и более экзотический тип MEMS-акселерометров – термальные датчики ускорения. В них в качестве основного объекта используется горячий пузырек воздуха. При движении пузырек отклоняется от центра системы, это отслеживается датчиками температуры. Чем дальше сместился пузырек – тем больше величина ускорения.

 

Менее популярный в статьях и обсуждениях, но гораздо более массовый тип MEMS-устройств – микроскопические микрофоны. Опять-таки, наиболее распространенными системами этого типа являются те, которые основаны на конденсаторном принципе.

Устроены они – проще некуда. Принципиально важных элементов в таком микрофоне всего два: это гибкая обкладка – мембрана, и более толстая, неподвижная обкладка. Под воздействием давления воздуха мембрана смещается, изменяется емкость между обкладками – при постоянном заряде изменяется напряжение. Эти данные пересчитываются в амплитуды и частоты звуковой волны.

 

Чтобы минимизировать влияние давления воздуха на неподвижную обкладку, эта обкладка перфорируется. Кроме того, под ней делается сравнительно большая ниша с обязательным вентиляционным отверстием. Идея в том, что единственным подвижным элементом в системе в идеале должна быть мембрана – и только она.

 

Как и в случае с акселерометрами, здесь может быть использован пьезоэффект - в этом случае под мембраной ставится пьезокристалл. Дальше – как и в случае пьезоакселерометров: давление воздуха передается мембраной на пьезоэлемент, под этим воздействием кристалл вырабатывает ток. Напряжение измеряется и переводится в амплитуду и частоту звука.

 

То, что годится для звука, подходит и для измерения давления в иных областях. Похожие на микрофоны MEMS-системы могут использоваться в качестве датчиков давления. Несложно догадаться, что применение такие сенсоры находят в уйме областей.

Но можно выделить одну область, которая является наиболее интересной и наиболее специфичной для датчиков давления, основанных на MEMS-технологии. Это медицина. Здесь размер действительно имеет значение. Если в какой-нибудь трубопровод вполне можно встроить «обычный», макроскопический датчик, то с кровеносным сосудом такой фокус, очевидно, не получится. Тут нужны очень и очень компактные решения.

 

Разумеется, в медицине востребованы не только датчики давления. Существует множество микроскопических биодатчиков, измеряющих массу разнообразных величин – от температуры до уровня глюкозы. Есть и более неожиданные устройства, вроде микроскопических систем подачи лекарств. И, разумеется, есть куча интереснейших прототипов, многие из которых в принципе не имеют аналогов среди макроустройств.

 

Одни из самых ярких представителей устройств с MEMS-актуаторами – DLP-проекторы (DLP – Digital Light Processing). В основе этих проекторов лежит относительно крупная – по общему размеру готового чипа – микроэлектромеханическая система под названием DMD (Digital Micromirror Device, цифровое микрозеркальное устройство). Это эксклюзивная разработка одного из гигантов полупроводниковой индустрии, компании Texas Instruments.

DMD-чип представляет собой матрицу микрозеркал, количество «боевых единиц» в которой равно разрешению итогового устройства. Скажем, для разрешения 1920х1080 – чуть больше 2 миллионов. Каждое микрозеркало – крошечная алюминиевая пластинка размером порядка 0,00001 на 0,00001 метра. Или, выражаясь в более удобных для микромира величинах – 10x10 микрон.

 

 

Зеркало покоится на сравнительно массивной площадке, которая прикреплена к более тонкой и более гибкой, чем прочие детали системы, полоске – подвесу – натянутой между опорами. В двух других углах основания, не занятых опорами, расположены электроды, которые за счет кулоновской силы могут притягивать один из краев зеркала. Таким образом, зеркало может наклоняться в одну и в другую сторону: не слишком сильно, обычно угол поворота составляет 12 градусов.

 

В одном из этих двух положений зеркальце отражает попадающий на него свет в сторону линзы и далее на экран. В другом положении – направляет световой поток в сторону, на теплоотвод. В первом случае на экране получается белая точка, во втором – черная. В результате слаженного действия всей матрицы создается картинка, состоящая из двух цветов: черного и белого.

 

Разумеется, такое однобитное изображение – не совсем то, что нужно в XXI веке. Для начала, к чистым черному и белому возникает желание добавить градации серого. Поскольку полупрозрачность, в отличие от ЖК-матриц, здесь использовать нельзя, свет приходится отмерять механически. Для этого зеркальце «мигает» с большой частотой. Эти «подмигивания» способны обеспечить до 1024 градаций серого. Между прочим, это в 16 раз больше, чем у среднестатистической ЖК-матрицы.

Итак, градации серого есть. Остается лишь добавить цвет. Непосредственно DMD-чип к этому уже не имеет почти никакого отношения (равно как не имеют непосредственного отношения к цвету и жидкие кристаллы). Но раз уж мы начали разбираться, как работают DLP-проекторы, то имеет смысл дойти до конца. Для добавления к изображению цветовой составляющей используется колесо с несколькими секторами, каждый из которых представляет собой светофильтр.

 

К базовым красному, синему и зеленому для большей яркости изображения обычно добавляется еще и прозрачный сектор. Иногда для более аккуратной передачи полутонов используются дополнительные светофильтры – как дополнительные ванночки с чернилами у фотопринтеров. Колесо вращается, опять-таки, очень-очень быстро, – микрозеркальная матрица выдает для каждого светофильтра свой кадр.

 

В итоге зеркалам приходится «подмигивать» несколько тысяч раз в секунду: для обеспечения градаций серого, по полному «серому» кадру на каждую из цветовых составляющих, да умножить на требуемое количество кадров в секунду. И все это – чистая механика. Миниатюрная настолько, что даже на кончике иглы помещается несколько десятков элементов матрицы.

 

Похожие на DMD устройства разработаны Фраунгоферовским институтом полупроводниковых технологий (Fraunhofer-Institut für Siliziumtechnologie). Используются они исключительно в научных целях. Зеркала в устройствах Фраунгоферовского института более крупные и выполнены несколько более грубо.

 

Микрозеркальные матрицы – частный случай оптических MEMS. Но есть и многие другие микросистемы, работающие со светом. Например, в астрономии существует весьма важная задача борьбы с искажениями, возникающими при прохождении света через неоднородную среду – атмосферу. Та же проблема актуальна и для микроскопии.

 

Задача решается с помощью адаптивной оптики – в частности, зеркал с изменяемой геометрией. Разумеется, существуют и макроскопические устройства такого рода. Но MEMS, как обычно, позволяет снизить цены и значительно увеличить компактность – если для телескопов последнее не так уж важно, то для микроскопов это очень даже актуально. Такие MEMS состоят из массива микрозеркал, которые могут наклоняться, подстраивая форму поверхности массива для борьбы с искажениями.

 

Еще один интересный случай использования микрозеркал – коммутация оптоволоконных сетей. В сложных системах задействуются зеркала, умеющие поворачиваться не по одной оси, как в DMD-чипе, а сразу по двум осям. Это позволяет создавать коммутаторы с большим количеством обслуживаемых каналов.

 

Современные принтеры оперируют с каплями краски объемом порядка пиколитра. А что такое пиколитр? Это шарик диаметром около 13 микрон. В одном кубическом миллиметре таких капелек помещается с десяток тысяч! Для того чтобы сформировать столь малый объем жидкости – и сформировать его строго в нужный момент – очевидно, требуется тончайшая механика. Так что и тут работает MEMS.

 

Происходит это следующим образом. Печатающая головка представляет собой массив из множества микроотверстий. Под отверстиями – миниатюрные полости, в которые чернила поступают из основного резервуара картриджа.

 

Сами собой чернила через дюзы не выливаются: диаметр отверстий настолько мал, что сила поверхностного натяжения не дает жидкости просто так вытечь наружу. Краску необходимо выдавить принудительно. Для этого можно воспользоваться несколькими различными технологиями.

 

Например, можно разместить в микрополости пьезоэлемент. Примерно такой же, как те, что используются в зажигалках. Только процесс в данном случае идет в обратную сторону. В зажигалках пьезоэлемент вырабатывает электричество от деформации (следующей от нажатия кнопки) кристалла. В печатающей головке принтера на пьезокристалл подается ток, вследствие чего кристалл увеличивается в объеме и толкает мембрану, которая, в свою очередь, выталкивает краску наружу. Именно такой метод использует компания Epson.

 

Более популярный подход, который практикуют компании HP, Canon и Lexmark: термоструйная печать. В полости размещается нагревательный элемент, который мгновенно нагревает чернила до очень высокой температуры. Жидкость вскипает, увеличивается в объеме и выплескивается из полости на поверхность.

 

Что любопытно, струйная печать может служить не только конечной целью производства MEMS, но и промежуточным этапом. Дело в том, что при современном уровне развития технологий струйной печати, она вполне подходит для изготовления микроструктур. Говоря по-простому, с помощью струйных принтеров можно печатать те или иные микроэлектронные или микроэлектромеханические устройства. Просто для этого надо использовать не обычные чернила, а растворы тех веществ, из которых можно изготовить требующуюся структуру.

 

Правда, есть технологические ограничения: в классических методах струйной печати не может быть получена капля размера меньшего, чем диаметр отверстия, из которого она вытекает – при таких размерах вернее будет сказать «выдавливается». Впрочем, если есть желание получить очень маленькую каплю, то выход есть.

 

Если капилляр с проводящей жидкостью поместить в электрическое поле, то форма поверхности жидкости будет отличаться от нормальной формы, обусловленной поверхностным натяжением. По мере увеличения напряжения она будет все ближе к конусу (так называемому конусу Тейлора), а при достижении некоего порогового значения напряжения с конца этого конуса начнут отрываться мельчайшие капли – их размер будет значительно меньше диаметра капилляра.

MEMS-транспортер, состоящий из массива микроскопических ресничек. Реснички упругие и в «выключенном» состоянии они отогнуты от основания. Чтобы притянуть их к подложке, используется уже знакомый нам по DMD-чипам метод – электростатическое притяжение. Кроме того, в реснички встроен терморезистор, за счет нагрева изменяющий упругость реснички.

 

Как и в микрозеркальных матрицах, каждый из элементов системы может занимать только два положения – верхнее и нижнее, включено/выключено – но этого, оказывается, вполне хватает для перемещения предметов по поверхности массива.

 

Транспортер можно задействовать не только для поступательного движения вдоль оси массива. Можно перемещать предмет под любым углом, его можно даже вращать – необходимо лишь правильно составить программу.

 

Что любопытно, это не единственный вариант MEMS-транспортера. Например, в Токийском университете для реализации схожего функционала использовали совсем другой метод: перемещение микрообъектов с помощью регулируемого потока воздуха. Дополнительное преимущество такого подхода состоит в том, что он бесконтактный – что позволяет свести к минимуму вероятность повреждения поверхности перемещаемого объекта.

А работает это следующим образом: создается массив дюз, каждая из которых закрывается снизу управляемой заглушкой. За счет электростатического притяжения заглушка может сдвигаться в одну или другую сторону. Поток воздуха при этом направляется на перемещаемый объект под углом – и «сдувает» его в нужном направлении.

 

Поскольку дюзы в данной реализации транспортера могут работать только в двух направлениях – «вправо» и «влево» – массив создается двойной: одна часть ячеек перемещает объект «вправо-влево», а другая часть – «вверх-вниз». Остается только написать правильную программу – и, точно так же, как и с ресничковым транспортером, предметы можно перемещать по достаточно сложным траекториям.

 

Те же принципы можно использовать, вывернув наизнанку. Вместо перемещения объекта по поверхности массива актуаторов, можно снабдить такими устройствами сам объект, установив актуаторы на его нижней поверхности. Правда, пока достаточно сложно решить вопросы с питанием и массой таких «самодвижущихся MEMS».

 

Раз уж зашла речь о потоках и энергии, нельзя не упомянуть и разработку Массачусетского технологического института – MEMS-турбину. Вполне типичная турбина, но очень, очень маленькая. Разрабатывается она в качестве замены традиционных литий-полимерных аккумуляторов – в первую очередь, для тех приложений, где требуется достичь минимальных размеров и максимальной энергоемкости на килограмм.

 

Скажем, для современных литий-ионных аккумуляторов, используемых в ноутбуках, характерны показатели порядка 200 Вт*ч/кг. В MIT уже к 2007 году должны были довести показатель до 500-700 Вт*ч/кг, а в перспектике собираются замахнуться на 1200-1500 Вт*ч/кг. Что существенно превышает любые разумные прогнозы по развитию традиционной Li-Ion технологии.

 

Как и с большинством MEMS, принцип можно использовать в обратном направлении: вместо того, чтобы превращать давление в электроэнергию, можно поступить наоборот. В этом случае из микротурбины после «обработки напильником» получается микронасос.

 

Сложно себе представить, чтобы кто-то решил от современного энергогенератора – турбины – двигаться в сторону прошлого. И все же такие нашлись и нашлись они в достаточно интересном месте. В американской государственной лаборатории Sandia, основной профиль которой — работа над ядерным оружием и прочими технологическими проектами, касающимися национальной безопасности США. Выросла эта лаборатория из проекта Манхэттен, если вы понимаете, о чем речь.

 

Сотрудники Sandia создали микроскопический паровой двигатель. А вернее, даже целых два: одноцилиндровый и трехцилиндровый. Сложно сказать, какие цели они преследовали на самом деле – не исключено, что ученые и сами до конца это знали. Однако получилось весьма экстравагантно. Ну и потом – как ни крути, это самый миниатюрный паровой двигатель в мире!

 

Вообще, в Sandia очень любят MEMS. И на удивление охотно – в отличие от наших «оборонщиков», которые и поныне не спешат выглядывать из своих «ящиков» – делятся своими разработками и концептами с общественностью. В Sandia успели разработать массу элементов, складывающихся в достаточно сложные MEMS-усторйства. Возьмем, к примеру, оптический затвор.

 

Устройство состоит из трех частей: самого затвора (большое колесико на фотографии), микродвигателя и трансмиссии. Двигатель состоит из двух расположенных перпендикулярно друг к другу электростатических актуаторов. Каждый из них может двигать шестеренку только в одном направлении: вперед и назад. Совместными усилиями они обеспечивают двумерное вращательное движение. Это движение с помощью маленькой шестеренки передается на большую, окантовывающую затвор.

 

Несколько более сложное устройство: микрозеркало с плавным изменением угла наклона. В качестве двигателя используются все те же электростатические актуаторы. А вот трансмиссия похитрее: движение передается через шестеренки на зубчатую рейку, которая переводит вращение в линейное движение. За счет чего и меняет наклон зеркла.

 

Самой же необычной разработкой Sandia стал самый маленький в мире работающий аттракцион. Сотрудники лаборатории умудрились покатать на одном из механизмов собственной разработке микроскопического клещика. Как говорят сами участники этого действа, сложнее всего было убедить насекомое, что ему действительно хочется кататься на этой импровизированной карусели.

 

При производстве MEMS-устройств используются примерно те же процессы и материалы, что и при производстве микроэлектроники. В качестве примера рассмотрим одну небольшую и относительно несложную задачу: производство массива микроэлектродов.

 

Первым делом, на кремниевую подложку – стандартную для микроэлектроники основу – наносится слой изолятора. Как вариант, вместо кремния с изолятором может использоваться стеклянная или даже пластиковая подложка – в данном случае вся идея в том, чтобы основа была электрически нейтральна.

 

После этого наносится слой металла, из которого впоследствии и получатся электроды. Он покрывается фоторезистом. Следующий этап – литография. Пропущенный через маску ультрафиолет (вполне может быть использовано и другое излучение – зависит от конкретной технологии) изменяет свойства фоторезиста. Та его часть, на которую попали лучи, становится нестойкой к растворителю и удаляется, обнажая слой металла. Неприкрытый фоторезистом металл вытравливается.

 

После удаления уже ненужного слоя фоторезиста на получившуюся поверхность наносится слой изолятора. Снова наносится фоторезист, снова через маску он облучается ультрафиолетом, снова производится травление, но уже слоя изолятора. В итоге получаются аккуратные углубления, в каждом из которых располагается электрод.

 

Разумеется, это был простейший, в прямом смысле слова элементарный пример – любые MEMS в десятки и сотни раз сложнее. Но производятся они примерно так же: с помощью постепенного наращивания одного слоя за другим. Как и в микроэлектронике, устройства производятся не по отдельности, а достаточно крупными пластинами, которые в конце процесса разрезаются на отдельные чипы и упаковываются в пластиковые, керамические и так далее корпуса.

 

Достаточно сложно представить, что полученное столь непростым способом устройство может стоить пару-тройку десятков рублей. Однако это действительно так – спасибо отработанным производственным процессам и многомиллионным партиям готовых чипов.

 

Впрочем, прогресс на месте не стоит, так что наверняка к этой теме нам еще придется вернуться. В конце концов, уже идет разработка еще более тонких устройств – NEMS, наноэлекромеханических систем.

 



Поделиться:


Последнее изменение этой страницы: 2017-02-19; просмотров: 235; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 52.15.63.145 (0.037 с.)