Открытия, предшествующие созданию компьютеров 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Открытия, предшествующие созданию компьютеров



 

Компьютера – величайшего изобретения ХХ века. Для его создания должны были произойти открытия в области физики, математики, техники.

Во-первых, в конце XIX века получила развития математическая физика. Нужны стали машины, способные производить многократно повторяющиеся вычисления.

Во-вторых, в 1800 году американский изобретатель Т. Эдисон открыл явление термоэлектронной эмиссии, что послужило основой для создания в 1904 году английским физиком Дж. Флемингом диода, прибора обладающего односторонней проводимостью электрического тока. Несколько позже был создан еще один вакуумный прибор – триод.

В-третьих, английский математик Дж. Буль еще в 1884 году описал правила логики, впоследствии названной его именем – булева алгебра. В соответствии с логикой алгебраические элементы могут принимать только два значения – истина (1) или ложь (0). Благодаря этой логике стало возможно конструирование логических схем.

И, в-четвертых, в 1918 году русский ученый М.А. Бонч - Бруевич и независимо от него английские ученые создали электронное реле, которое могло находиться в одном из двух состояний – 0 или 1 и на базе которого был создан триггер.

Можно сказать, что к ХХ веку все было подготовлено для создания компьютера. Выше перечисленные события имели большое значение, они создали предпосылки для появления компьютера.

 

Поколения ЭВМ

Первое поколение

В вычислительной технике существует своеобразная периодизация развития электронных вычислительных машин. Всю электронно-вычислительную технику принято делить на поколения. ЭВМ относят к тому либо иному поколению в зависимости от типа главных используемых в ней частей либо от технологии их производства. От элементной базы зависит мощность компьютера, что в свою очередь привело к изменениям в архитектуре ЭВМ, расширению круга ее задач, к изменению способа взаимодействия пользователя и компьютера. Ясно, что границы поколений в смысле времени сильно размыты, так как в одно и то же время практически выпускались ЭВМ разных типов; для отдельной же машины вопрос о её принадлежности к тому либо иному поколению решается довольно просто.

Предшественниками ЭВМ были релейные вычислительные машины. Реле позволяло кодировать информацию в двоичном виде состояниями включено-выключено. В процессе работы такой машины тысячи реле переключались из одного состояния в другое. Такие машины работами с низкой скоростью (50 сложений или 20 умножений в секунду).

С развитием в первой половине ХХ века радиотехники связан переход от релейных вычислительных машин к машинам на электронно-вакуумных лампах, которые стали элементарной базой вычислительных машин первого поколения.

Первая ЭВМ создавалась в 1943 - 1946 гг. Самой знаменитой была машина созданная в США и называлась она ENIAC (электронный цифровой интегратор и вычислитель). Эта машина содержала около 18 тысяч электронных ламп, множество электромеханических реле. Ее создателями были Дж. Моучли.

ЭВМ первого поколения располагались в огромных машинных залах, потребляли много электроэнергии и требовали остывания с помощью массивных вентиляторов. Программы для этих ЭВМ необходимо было составлять в машинных кодах, и этим могли заниматься лишь мастера, понимающие в деталях устройство ЭВМ.

В 1945 году известный математик и физик - теоретик фон Нейман определил общие принципы работы универсальных вычислительных устройств. Согласно фон Нейману вычислительная машина обязана была управляться программой с последовательным выполнением команд, а сама программа - храниться в памяти машины. Первая ЭВМ с хранимой в памяти программой была построена в Англии в 1949 г.

В СССР созданием компьютеров занимался академик С. А. Лебедева. Его машины БЭСМ – 1, БЭСМ-3М, БЭСМ-4, М- 220 были признаны лучшими в мире.

ЭВМ постоянно совершенствовались, благодаря чему к середине 50 -х годов их быстродействие удалось повысить от нескольких сотен до нескольких десятков тысяч операций в секунду. Но при этом электронная лампа оставалась самым надежным элементом ЭВМ. Внедрение ламп стало тормозить дальнейший прогресс вычислительной техники.

Потом на смену лампам пришли полупроводниковые приборы, тем самым завершился первый этап развития ЭВМ. Вычислительные машины этого этапа принято именовать ЭВМ первого поколения

Таким образом, машины первого поколения имели внушительные размеры, потребляли огромную мощность, имели сравнимо маленькое быстродействие, малую емкость оперативной памяти, невысокую надежность работы и недостаточно развитое программное обеспечение. В ЭВМ этого поколения были заложены базы логического построения машин и продемонстрированы способности цифровой вычислительной техники. Но использование в качестве элементной базы электронно-вакуумных ламп тормозило развитие и совершенствование ЭВМ, ограничивало область их применения. Они использовались в основном для инженерных и научных расчетов, не связанных с переработкой больших объемов информации.

В ниже приведенной таблице собрана краткая характеристика ЭВМ I-го поколения:

 

Характеристики I поколение
Годы 1945- 1958 гг.
Элементная база Электронно-вакуумные лампы
Размер (габариты) Громоздкие сооружения, занимавшие сотни квадратных метров, потреблявшие сотни киловатт электроэнергии и содержащие в себе тысячи ламп.
Максимальное быстродействие процессора От нескольких сотен до нескольких десятков тысяч операций в секунду.
Максимальный объем ОЗУ Несколько тысяч команд программы
Периферийные Перфоленты и перфокарты
Программное обеспечение Программы составлялись на языке машинных команд, поэтому программирование было доступно не всеем. Существовали библиотеки стандартных программ.
Области применения Инженерные и научные расчеты, не связанные с переработкой больших объемов информации
Примеры Mark I, ENIAC, БЭСМ.

компьютер вычислительный информационный технология

Второе поколение

Создатели ЭВМ постоянно следовали за прогрессом в электронной технике. В 1949 году в США был создан транзистор – первый полупроводниковый прибор, заменивший электронную лампу. Они были компактнее, имели большой срок службы, значительно меньше потребляли электроэнергию, выделяли меньше тепла при работе. С внедрением цифровых частей на полупроводниковых устройствах началось создание ЭВМ второго поколения. Благодаря применению более совершенной элементной базы начали создаваться относительно небольшие ЭВМ, вышло естественное разделение вычислительных машин на большие, средние и малые.

В СССР были разработаны и обширно использовались серии малых. Рекордной посреди российских машин этого поколения и одной из наилучших в мире была БЭСМ - 6 («большая электронно-счетная машина»), которая была создана коллективом академика С.А. Лебедева. Производительность БЭСМ - 6 была на два - три порядка выше, чем у малых и средних ЭВМ, и составляла более 1 млн. Операций в секунду. За рубежом более распространенными машинами второго поколения были «Элиот» (Англия), «Сименс» (ФРГ), «Стретч» (США).

Одновременно с развитием ЭВМ развивались и периферийные устройства – внешняя память на магнитных барабанах и лентах. Совершенствовались языки программирования, появились языки высокого уровня ФОРТРАН, АЛГОЛ, КОБОЛ. Программы и программирование стало проще, понятнее и доступнее. Расширилась область применения, стали создаваться электронно-справочные и информационные системы.

В ниже приведенной таблице собрана краткая характеристика ЭВМ II-го поколения:

 

Характеристики II поколение
Годы 1959 – 1963 гг.
Элементная база Транзисторы
Размер (габариты) Стали компактнее, надежнее, менее энергоемкие
Максимальное быстродействие процессора Десятки и сотни тысяч операций в секунду
Максимальный объем ОЗУ Увеличился в сотни раз
Периферийные Внешняя память на магнитных барабанах и лентах
Программное обеспечение Программы и программирование стало проще, понятнее и доступнее. Стали развиваться языки высокого уровня программирования.
Области применения Создание информационно-справочных и информационных систем
Примеры М-220, Мир, БЭСМ-4, IBM-7094

 

ЭВМ третьего поколения

Революцию технологии производства ЭВМ вызвало создание интегральных схем, на которых транзисторы, конденсаторы и резисторы собрались в едином куске полупроводника. Это произошло в конце 30-х годов XX века. Операция изготовления интегральных схем все время совершенствовалась и в результате на одной кремневой пластинке стало возможным разместить сотни кристаллов интегральных схем. Произошел переход к третьему поколению ЭВМ.

Применение интегральных схем позволило увеличить количество электронных частей в ЭВМ без роста их настоящих размеров. Быстродействие ЭВМ возросло до 10 миллионов операций в секунду. Не считая того, составлять программы для ЭВМ стало по силам обычным пользователям, а не лишь специалистам – электронщикам. При проектировании процессора стали использовать технику микропрограммирования – конструирование сложных команд процессора из простых.

В машинах третьего поколения в качестве средства общения стали использоваться видеотерминальные устройства – дисплей.

В третьем поколении возникли крупные серии ЭВМ, различающиеся собственной производительностью и назначением. Это семейство огромных и средних машин IBM360/370, разработанных в США.

В ниже приведенной таблице собрана краткая характеристика ЭВМ III-го поколения:

 

Характеристики III поколение
Годы 1964 – 1976 гг.
Элементная база Интегральные схемы
Размер (габариты) ЭВМ делятся на большие, средние, мини и микро
Максимальное быстродействие процессора До10 миллионов операций в секунду.
Максимальный объем ОЗУ До 16 Мбайт. Появляются ПЗУ
Периферийные Внешняя память на магнитных дискетах, дисплей.
Программное обеспечение Появились операционные системы и множество прикладных программ. Многопрограммный режим – возможность выполнять несколько программ одновременно.
Области применения Базы данных, первые системы искусственного интеллекта, системы автоматизированного управления и проектирования
Примеры БЭСМ-6, IBM/360

 

ЭВМ четвертого поколения

Новые технологии создания интегральных схем в конце 70-х – начале 80-х годов ХХ века позволили разработать большие интегральные схемы – БИС

Технология производства БИС постоянно совершенствовалась, это привело к созданию сверхбольших интегральных схем (СБИС) с памятью 1 Мбайт. СБИС позволили создать микропроцессор, который произвел очередную революцию в мире вычислительной техники и привел к появлению ЭВМ четвертого поколения. Микропроцессор способен выполнять функции основного блока компьютера – процессора. Он работает по заложенной в него программе и может встраиваться в различные технические устройства.

Одним из революционных достижений в области вычислительной техники явилось создание персональных ЭВМ, которые можно отнести к отдельному классу машин четвертого поколения. Именно с этого момента в нашем языке вместо «ЭВМ» утвердился термин «персональный компьютер» - ПК.

Сегодня ПК пользуются такой популярностью, что становятся такой же привычной бытовой техникой, как и телевизор или магнитофон.

В ниже приведенной таблице собрана краткая характеристика ЭВМ IV-го поколения:

 

Характеристики IV поколение
Годы 1977 – 1990 гг.
Элементная база БИС и СБИС
Размер (габариты) Микро ЭВМ – малые габариты, сравнимые с размерами бытового телевизора; суперкомпьютеры – состоят из отдельных блоков и центрального процессора.
Максимальное быстродействие процессора От 2,5 МГц и больше.
Максимальный объем ОЗУ От 16 Мбайт и больше.
Периферийные Цветной графический дисплей, манипуляторы типа «мышь», «джойстик», клавиатура, магнитные и оптические диски, принтеры и пр.
Программное обеспечение Пакеты прикладного, сетевого, мультимедиа программного обеспечения
Области применения Все сферы научной, производственной и учебной деятельности, отдых и развлечение, Интернет
Примеры IBM PC, Macintosh, Cray, Эльбрус

 

ЭВМ пятого поколения

Конец 90-х превратился в настоящую гонку конкурирующих титанов – производителей компьютерной техники. Стремительно повышается тактовая частота процессоров и их модификации. Возрастающая скорость работы процессоров стимулировала совершенствование других узлов и периферийных устройств компьютерного «железа. Некоторые специалисты считают, что в 90-х годах ХХ века появился компьютер V поколения, представляющий собой: ЭВМ на сверхсложных микропроцессорах с параллельно-векторной структурой, одновременно выполняющих десятки последовательных команд программы, что позволяет строить эффективные системы обработки знаний.

5-е поколение, 90-е гг.: ЭВМ с многими десятками параллельно работающих микропроцессоров, позволяющих строить;

Примерная характеристика компьютеров пятого поколения:

 

Характеристики V поколение
Годы 1990 – наши дни
Элементная база ЭВМ на сверхсложных микропроцессорах с параллельно-векторной структурой, одновременно выполняющих десятки последовательных команд программы; многоядерность
Размер (габариты) Появление карманных компьютеров
Максимальное быстродействие процессора от 4 ГГц
Максимальный объем ОЗУ от 2000Mb и выше
Периферийные Картридер, flash- память, геймпады, многофункциональные устройства
Программное обеспечение Развитие существующих пакетов прикладного, сетевого, мультимедиа и пр. программного обеспечения
Области применения Расширение сферы научной, производственной и учебной _деятельности, отдых и развлечение, Интернет
Примеры Pentium 4, Athlon

 



Поделиться:


Последнее изменение этой страницы: 2017-02-22; просмотров: 387; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.221.13.173 (0.015 с.)