Расчет устойчивости в предложении круглоцилиндрических и плоских поверхностей скольжения. Учет динамических и сейсмических воздействий. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Расчет устойчивости в предложении круглоцилиндрических и плоских поверхностей скольжения. Учет динамических и сейсмических воздействий.



База экзаменационных вопросов (БЭВ)

по дисциплине «Геотехнические проблемы в строительстве»

для магистрантов, гр. МСтр-16(1)

Практический блок

Расчет устойчивости в предложении круглоцилиндрических и плоских поверхностей скольжения. Учет динамических и сейсмических воздействий.

 

Группы предельных состояний при расчете оснований и фундаментов.

Расчет оснований производят по первой группе (по несущей способности) — если необходимо обеспечить прочность и устойчивость основания, не допустить сдвиг или опрокидывание, если на основание передаются регулярно действующие горизонтальные нагрузки, если основания ограничены откосами или сложены скальными грунтами. По второй группе предельных состояний (по деформациям) — для всех зданий и сооружений, если основание сложено нескальными грунтами. Для оснований из нескальных пород рассчитывают осадки фундаментов и учитывают их неравномерность. Задачей расчета оснований по деформациям является ограничение деформаций надфундаментных конструкций пределами, гарантирующими от появления недопустимых для нормальной эксплуатации конструкций трещин и повреждений, а также изменений проектных уровней и положений.

 

 

1) По несущей способности S≤Su

2) По дефоP≤R

 

 

Нагрузки и воздействия, учитываемые при расчете оснований и фундаментов.

Сваи. Классификация свай: материалы, конструкций, способ изготовления, область применения. Методы устройства свай: забивка, вибропогружение, вдавливание, завинчивание. Оборудование для погружения свай.

Термическое и электрохимическое закрепление грунтов. Основные свойства закрепленных грунтов.

В слабо фильтрующих, слабых грунтах при kf= 0,1 м/сут используют электрохимическое закрепление грунтов. Этот метод основывается на использовании электроосмоса для принудительного введения в грунты растворов силиката натрия и хлористого кальция, для чего через грунты с £/=0,005…0,1 (пески пылеватые, супеси и легкие суглинки) пропускается электрический ток, вызывающий движение воды от анода к катоду. В качестве анода используют перфорированную трубу, в полость которой последовательно вводят химические укрепляющие вещества, а через катод откачивают воду. Под действием электрического тока увеличивается скорость проникновения закрепляющих растворов, скорость протекания физико-химических реакций по образованию нерастворимых соединений и необратимых коллоидов, а также уменьшается влажность около анодов. Эти факторы способствуют омо-ноличиванию грунта и улучшению строительных характеристик на Длительный период времени, т. е. приводят к его закреплению.

При коэффициентах фильтрации Лу<0,01 м/сут иногда для улучшения закрепления применяют электролиты, способствующие внедрению в грунт их ионов (в качестве электролита используют раствор хлористого кальция). Однако в некоторых случаях даже при меньших значениях коэффициента фильтрации к/< 0,005 м/сут можно не применять электролиты, если в грунтах, например в илах, содержатся соли, вступающие в реакцию.

 

Расчёт свайных фундаментов из забивных железобетонных свай на сейсмические воздействия.

Особенности строительства на закарстованных территориях. Оценка характера и степени опасности каркаса. Противокарстовая защита. Устройство противокарстовых фундаментов. Расчет фундаментных конструкций.

Согласно действующим нормативным документам к карстовым районам относятся территории, в геологическом разрезе которых присутствуют растворимые породы, и имеют место или возможны поверхностные и подземные проявления карста.

Выделяются следующие основные литологические типы карста: карбонатный; меловой; гипсовый; соляной.

Более существенное влияние на методику работ оказывают условия залегания карстующихся пород. По условиям залегания различают следующие типы карста:

- открытый или средиземноморский, когда карстующиеся породы лежат непосредственно на поверхности;

- покрытый, когда карстующиеся породы перекрыты либо водопроницаемыми, либо водонепроницаемыми нерастворимыми породами.

Благодаря неглубокому залеганию карстующихся пород облегчается производство геофизических работ, повышается их эффективность.

В районах покрытого карста, в которых карстующиеся породы перекрыты слоями нерастворимых водопроницаемых пород, возникают трудности обнаружения зон возможных карстовых провалов с помощью геофизических методов при значительной мощности перекрывающих четвертичных отложений (более 20 м). Однако задача обнаружения может облегчаться за счет вторичных изменений вышележащих пород.

В случае наличия перекрывающих рыхлых отложений (пески, супеси) в зоне развития карста возникают побочные суффозионные явления, мощность их нередко возрастает вследствие понижения кровли карстующихся пород. Кроме того, существенным поисковым критерием является уменьшение влагосодержания рыхлых пород непосредственно над карстовой зоной, что влечет за собой повышение УЭС этих пород. Последнее обстоятельство связано с интенсивной инфильтрацией поверхностных вод в карстовые полости.

Другим существенным поисковым критерием для геофизических методов является резкий перепад УГВ в зоне развития карста. В районах покрытого карста, в которых карстующиеся породы перекрыты слоями нерастворимых водонепроницаемых пород, последние препятствуют развитию карста и связанных с ним явлений.

Чем больше мощность перекрывающих отложений, тем труднее установить геофизическими методами зоны карстовых пустот, развитые на глубине. В этом случае необходимо проведение широкого комплекса геофизических методов, включающих электроразведку, сейсморазведку и различные методы каротажа (КС, ПС, резистивиметрия, ГК, ГГК и др.).

По отношению к уровню подземных вод карстующиеся породы залегают: в зоне аэрации, в зоне постоянного водонасыщения и в смешанной зоне.

В зоне аэрации карст в большинстве случаев представлен в виде полостей, незаполненных вмещающим материалом; в зоне же постоянного водонасыщения карстовые полости часто заполнены вторичным переотложенным материалом (глиной, суглинком, продуктами разрушения карстующихся пород, находящимися в водонасыщенном состоянии).

Геофизические методы исследования в карстовых районах решают следующие основные задачи:

литологическое расчленение пород;

поиски и оконтуривание карстовых полостей или зон их развития (поверхностных и погребенных), определение рельефа карстующихся пород;

изучение степени трещиноватости пород и преобладающего его направления;

исследование гидрогеологических особенностей карста.

 

Проектирование фундаментов на подрабатываемых территориях. Принципы проектирования и защитные конструктивные мероприятия.

Возведение фундаментов вблизи существующих зданий. Определение предельно допустимых дополнительных деформаций. Деформации зданий при проведении рядом с ними строительных работ. Конструктивные решения при возведении фундаментов в близи существующих зданий.

В последние годы особую актуальность приобретает проблема возведения фундаментов новых зданий вблизи существующих объектов, поскольку при этом возникают не только значительные технологические трудности, но и опасность повреждений расположенных в непосредственной близости ранее возведенных строений. Строительство зданий вблизи или вплотную к уже существующим является более сложной задачей, чем возведение отдельно стоящего здания. Опыт свидетельствует, что пренебрежение особыми условиями такого строительства может привести к появлению в стенах ранее построенных зданий трещин, к перекосам проемов и лестничных маршей, к сдвигу плит перекрытий и, в конечном итоге, к нарушению нормальных условий эксплуатации существующих зданий, а иногда даже к аварийным ситуациям.

Причины, обусловливающие проявление дополнительных деформаций существующих зданий при возведении около них фундаментов:

-выпор грунта в сторону разрабатываемого котлована;

-суффозия грунта из-под подошвы фундамента при открытом водоотливе;

-динамическое воздействие на грунт при забивке шпунта свай;

-разработка мерзлого грунта и промораживание талого грунта;

-отклонение шпунта под воздействием нового фундамента.

При разработке котлована для строительства нового здания рядом с существующим необходимо соблюдать следующие правила:

-не применять ударные и взрывные способы разработки грунта;

-максимально сокращать строительные работы в котловане.

Если строительство ведется рядом с существующим зданием вплотную и отметки заложения подошв их фундаментов совпадают, то не рекомендуется разрабатывать весь котлован до стенки существующего фундамента без специальных мероприятий. Строительство в этом случае осуществляют захватками. При этом соседняя захватка делается только после возведения фундамента на предыдущем участке.

Если глубина заложения подошвы фундамента нового здания больше, чем глубина существующего, то применяется шпунтовое ограждение, или «стена в грунте». Водопонижение в этих случаях следует проводить с осторожностью, так как оно может вызвать дополнительные осадки.

Для рядом строящихся зданий желательно использовать однотипные фундаменты.

Основная опасность для существующих зданий связана с развитием дополнительных осадок, вызванных передаваемым давлением на грунт основания новым зданием. При этом наибольшие повреждения возникают в пределах 2...7 м от границы примыкания старых зданий. Следовательно, если между смежными зданиями обеспечен достаточный разрыв, то опасность дополнительной осадки резко снижается.

Устройство буронабивных свай по технологическим особенностям вполне отвечает требованиям к возведению фундаментов вблизи зданий. Известно много типов буронабивных свай, отличающихся, в основном, конструкцией оборудования, применяемого для проходки скважин, изготовления ствола и уширения сваи. Опыт строительства зданий на таких сваях свидетельствует о снижении в несколько раз осадок домов по отношению к фундаментам на естественном основании. Это позволяет использовать буронабивные сваи на участках примыкания к существующим зданиям, обеспечивая тем самым уменьшение влияния загружения соседних площадей до безопасных величин.

В перспективе при выборе типа фундаментов вблизи существующих зданий преимущество будет отдаваться буронабивным сваям, позволяющим достигать высокого уровня механизации процесса, иметь высокую несущую способность, проходить толщу слабых грунтов, опираться на прочные грунты и создавать необходимые условия для сохранения несущих конструкций зданий, вблизи которых выполняется строительство новых зданий.

 

Особенности производства работ по возведению фундаментов. Крепление стен котлована. Расчет шпунтовой стенки.

Для расчетов деформаций, устойчивости грунта и оценки прочности оснований необходимо знать механические характеристики используемых грунтов. На механические свойства оказывают влияние характер структурных связей частиц, гранулометрический и минеральный состав и влажность грунтов. Основными механическими свойствами грунтов считают: сжимаемость; сопротивление сдвигу; водопроницаемость, сжимаемость грунтов.

Предельным сопротивлением сдвигу (растяжению) называется способность грунта противостоять перемещению частей грунта относительно друг друга под воздействием касательных и прямых напряжений. Этот показатель характеризуется прочностными свойствами грунтов и используется в расчетах оснований зданий и сооружений. Способность грунта воспринимать нагрузки не разрушаясь, называют прочностью.

Водопроницаемость характеризуется способностью грунта пропускать через себя воду под действием разности напоров и обуславливается физическим строением и составом грунта. При прочих равных условиях при физическом строении с меньшим содержанием пор, и при преобладании в составе частиц глины водопроницаемость будет меньшей, нежели у пористых и песчаных грунтов соответственно.

Показатели сопротивления грунта сдвигу определяются различными способами, среди которых можно выделить три группы:

- способы определения сопротивления сдвигу по одной или двум заранее фиксированным плоскостям в сдвиговых приборах;

- способы определения сопротивления сдвигу путем раздавливания при одноосном и трехосном сжатии;

- способ определения сопротивления сдвигу по углу естественного откоса.

Лабораторные испытания грунтов для определения показателей трения и сцепления способом поперечного сдвига производят путем среза нескольких образцов исследуемого грунта. При этом в зависимости от характера предварительной подготовки образцов к опыту различают:

а) сдвиг нормально уплотненных образцов (завершенное уплотнение), когда образцы перед опытом предварительно уплотняются под разными нагрузками до окончания процесса консолидации; срез каждого образца производится при той же вертикальной нагрузке, под которой он предварительно уплотнялся;

б) сдвиг переуплотненных образцов, когда образцы предварительно уплотняются до окончания процесса консолидации, а сдвигаются без нагрузки или при меньших нагрузках;

в) сдвиг недоуплотненных образцов (незавершенное уплотнение), когда образцы предварительно не уплотняются или уплотняются в продолжение короткого времени, за которое не наступает полная консолидация; срез производится при различных вертикальных нагрузках.

Фильтрация воды в грунтах, понятие о начальном градиенте напора. Капиллярные явления. Испытания грунта в приборе трёхосного сжатия (стабилометре).

Методы расчета откосов

Во всех расчетах напряженное состояние полагается плоско деформированным, то есть рассматривается узкая полоса склона шириной 1 м, условия ее работы сохраняются для всего склона.
В этих методах поверхность скольжения считается известной заранее. При расчетах устойчивости склона или оползневого давления призма скольжения делится вертикальными линиями на ряд отсеков. Обычно отсеки принимаются такими, чтобы без потери точности можно было в их пределах принимать поверхность за плоскость, а очертание склона, действие внешних сил и т.п. практически однородными.
Рассматриваются условия равновесия i-го отсека (Рис. 1, Рис. 2, Рис. 3). Все внешние активные силы (вес грунта в отсеке, внешняя нагрузка и т.д.), действующие на i-й отсек, приводятся к равнодействующей Pi. Последнюю раскладываем в точке ее приложения на составляющие: нормальную PNi и касательную PQi к плоскости возможного сдвига отсека.

 

PNi= Picos αi;
PQi = Pisin αi.

Требования, необходимые при проектировании фундаментов.

Фундаменты устраиваются для передачи нагрузок от конструкций зданий и сооружений, установленного в них технологического и другого оборудования и полезных нагрузок на грунты основания. Основание, воспринимая эти нагрузки, претерпевает, как правило, неравномерные деформации, что вызывает появление в конструкциях дополнительных перемещений и усилий.

В зависимости от типа сооружения, рельефа местности, инженерно-геологических и гидрогеологических условий строительной площадки, климатических и метеорологических условий района строительства, даже времен года, когда выполняются эти работы, технология производства строительных работ может значительно изменяться. Правильный выбор технологии подготовки оснований и устройства фундаментов имеет очень большое значение для надежного и экономичного строительства сооружений.

Работы по устройству оснований и фундаментов без проекта производства работ не допускаются.

Очередность и способы производства работ должны быть увязаны с работами по прокладке подземных инженерных коммуникаций, строительству подъездных дорог на стройплощадке и другими работами нулевого цикла.

При устройстве оснований, фундаментов и подземных сооружений необходимость водопонижения, уплотнения и закреплении грунта, устройства ограждения котлована, замораживания грунта, возведения фундаментов методом «стена в грунте» и проведения других работ устанавливают проектом сооружения, а организацию работ - проектом организации строительства.

При расчете жестких фундаментов принята линейная зависимость распределений напряжений под подошвой фундамента.

При расчете фундаментов конечной жесткости (гибких фундаментов- балок и плит) условная линейная эпюра распределения напряжений под подошвой гибкого фундамента не приемлема.

В этом случае необходимо учитывать M и Q, возникающие в самой конструкции фундамента, вследствие действия неравномерных контактных реактивных напряжений по подошве фундамента. Не учет возникающих усилий может привести к неправильному выбору сечения фундамента или % его армирования.

Поэтому необходимо решать задачу совместной работы фундаментной конструкции и сжимаемого основания.

Гибкие фундаменты - это те, деформации изгиба которых того же порядка, что и осадки этого же фундамента

∆ S(см) ≈ f(см);

∆ S – осадка фундамента (деформация основания)

f – деформация изгиба фундамента

Таким образом, при расчете гибких фундаментов необходимо одновременно учитывать и деформации фундамента (конструкция) и его осадки ( грунт ).

На основании вышеизложенного можно сформулировать общие требования, предъявляемые в действующих нормативных документах к проектированию оснований и фундаментов:

 обеспечение прочности и эксплуатационных параметров зданий и сооружений (общие и неравномерные деформации не должны превышать допустимых величин);

 максимальное использование прочностных и деформационных свойств грунтов основания, а также прочности материала фундамента;

 достижение минимальной стоимости, материалоемкости и трудоемкости, сокращение сроков строительства.

Соблюдение этих положений основывается на выполнении указанных ниже условий:

 комплексный учет при выборе типа оснований и фундаментов инженерно-геологических и гидрогеологических условий строительной площадки;

 учет влияния конструктивных и технологических особенностей сооружения на его чувствительность к неравномерным осадкам;

 оптимальный выбор методов выполнения работ по подготовке оснований, устройству фундаментов и подземной части сооружений;

 расчет и проектирование оснований и фундаментов с учетом совместной работы системы «основание - фундаменты - конструкции сооружения».

Таким образом, проектирование оснований и фундаментов состоит в выборе типа основания (естественное или искусственное), конструктивного решения (в том числе материала) и размеров фундаментов (глубина заложения, размеры площади подошвы и т. д.), а также определении мероприятий, применяемых для уменьшения влияния деформаций основания на эксплуатационную пригодность и долговечность сооружения.

 

Основные положения расчета оснований по предельным состояниям.

База экзаменационных вопросов (БЭВ)

по дисциплине «Геотехнические проблемы в строительстве»

для магистрантов, гр. МСтр-16(1)

Практический блок

Расчет устойчивости в предложении круглоцилиндрических и плоских поверхностей скольжения. Учет динамических и сейсмических воздействий.

 

Расчет устойчивости в предложении круглоцилиндрических и плоских поверхностей скольжения. Учет динамических и сейсмических воздействий.

Реальные грунты, как правило, обладают не только сцеплением, но и трением. В связи с этим проблема устойчивости откосов становится значительно сложнее. Поэтому на практике для решения задач в строгой постановке, большое распространение получил метод круглоцилиндрических поверхностей скольжения.

Большое распространение на практике получил метод круглоцилиндрических поверхностей скольжения, сущность этого метода заключается в отыскании круглоцилиндрической поверхности скольжения с центром в некоторой точке О, проходящей через подошву откоса, для которой коэффициент устойчивости будет минимальным (рис. 1).

Рис. 1. Схема к расчету устойчивости откоса методом круглоцилиндрической поверхности скольжения

Расчет ведется для отсека, для чего оползающий клин ABC разбивается на n вертикальных отсеков. Делается предположение, что нормальные и касательные напряжения, действующие по поверхности скольжения, в пределах каждого из отсеков оползающего клина определяются весом данного отсека Qi, и равны соответственно:

(1)

(2)

Здесь Ai — площадь поверхности скольжения в пределах i -го вертикального отсека, Ai= 1li; li — длина дуги скольжения в плоскости чертежа (см. рис. 1).

Препятствующее оползанию откоса сопротивление сдвигу по рассматриваемой поверхности в предельном состоянии

(3)

Из (1)—(3) следует выражение для силы сопротивления сдвигу в пределах i -го отсека:

(4)

Устойчивость откоса можно оценить отношением моментов удерживающих Ms,l и сдвигающих Ms,a сил. Соответственно коэффициент запаса устойчивости определим по формуле

(5)

Момент удерживающих сил относительно О представляет собой момент сил Qi:

(6)

Момент сдвигающих сил относительно точки О

(7)

Тогда формулу (4) можно записать в следующем виде:

(8)

При наличии подземных вод учитывают фильтрационное давление, которое будет уменьшать устойчивость откоса. Фильтрационное давление определяют как нормальную составляющую:

(9)

для i -й призмы или отсека

где А' — площадь, занятая фильтрационным потоком в оползающей призме грунта, равная А' = А'1 + А'2 + А'3 (рис. 2); γω — удельный вес воды.

Рис. 2. Схема к определению площади, занятой фильтрационным потоком

Фильтрационное давление влияет только на нормальную составляющую формулы (8).

Устойчивость откоса согласно изложенной расчетной методике обеспечена, если ks >1. При проектировании сооружений коэффициент устойчивости назначают обычно в пределах 1,2—1,3.

Для решения практических задач установлен следующий порядок расчета. Из некоторого произвольного центра О1 радиусом R через точку С проводят поверхность скольжения (см. рис. 2). Участок откоса, ограниченный дугой АС и ломаной линией откоса ABC, разбивают на ряд призм равной ширины, массу которых подсчитывают как площади соответствующих фигур, умноженных на удельный вес грунта. При наличии в откосе грунтов с различным удельным весом строят фиктивный профиль с удельным весом, приведенным к одному из имеющихся.

Далее по формуле (8) определяют коэффициент устойчивости. После того повторяют построения и расчеты при цилиндрических поверхностях скольжения, проведенных из новых центров О2, О3 и т.д. до тех пор, пока не будет найдено минимальное значение ks на первой вертикали. Аналогично проводят расчет, определяя минимальное значение коэффициента устойчивости для второй вертикали, строя круглоцилиндрические поверхности, проведенные из центров O 4, O5, O6. Затем такие же расчеты повторяют для третьей, четвертой и т.д. вертикалей, пока не будет определен самый минимальный коэффициент устойчивости. Поверхность скольжения, имеющая наименьшую величину ks, будет наиболее вероятной поверхностью скольжения грунтов склона.

Группы предельных состояний при расчете оснований и фундаментов.



Поделиться:


Последнее изменение этой страницы: 2017-02-19; просмотров: 230; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.222.110.235 (0.073 с.)