Классификация неисправностей лвс и свт 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Классификация неисправностей лвс и свт



Все сетевые неисправности, негативно влияющие на критерий качества работы сети, разделяют на следующие группы: явные адресуемые дефекты, явные сетевые дефекты, скрытые сетевые дефекты, явные узкие места, скрытые узкие места.

К категории адресуемых относятся дефекты, причиной возникновения которых является недостижимость конечных либо промежуточных узлов компьютерной сети, выявляемая в процессе попытки получения доступа к ресурсам недостижимого узла. Недостижимость узлов сети может быть следствием физического дефекта сетевых компонентов (некорректный монтаж кабельной системы, отказы повторителей, концентраторов, внешние наводки, отказы сетевых адаптеров) либо некорректной конфигурации сетевого подключения (установка сетевой карты с неподдерживаемым протоколом, неверно заданная маска подсети, дублированный IP-адрес).

К категории явных относятся дефекты, следствием которых является искажение кадров в процессе их передачи по сети. Основной причиной искажения кадров в сети являются дефекты пассивного сетевого оборудования, влияние внешних помех и некоторые неисправности приемо-передающих модулей активного сетевого оборудования. В качестве примера явных дефектов можно привести неисправности в кабельной системе, которые проявляются либо в виде ошибок соединения, сообщения о которых выдаются операционной системой клиента, либо в виде ошибок канального уровня, перехватывающихся анализатором протоколов и многофункциональным сканером. По разным оценкам, доля дефектов только пассивного сетевого оборудования составляет от 65 до 85%. В отличие от скрытых, явные дефекты сети достаточно просто обнаружить с помощью средств пассивной диагностики. Для этого все проходящие по сети кадры необходимо проанализировать на предмет наличия в них искажений. Тенденция развития сетевых технологий такова, что относительная доля явных дефектов постоянно снижается. С одной стороны, это вызвано переходом с коаксиального кабеля на витую пару и оптику, что повышает помехоустойчивость каналов передачи информации. С другой стороны, активное сетевое оборудование становится все более сложным, и это повышает вероятность появления в нем скрытых дефектов.

Скрытые дефекты замедляют работу сети, но не вызывают появления искаженных кадров. К таким относятся: некорректная настройка датчика межкадровой паузы на сетевой плате, приводящая либо к захвату сети дефектной сетевой платой, либо к ее постоянному простою; искажение информации после проверки контрольной суммы в активном сетевом оборудовании; дефекты в микропрограммном обеспечении коммутаторов, приводящие к необоснованному удалению кадров из портов либо к взаимной блокировке портов.

Кроме адресуемых, явных и скрытых сетевых дефектов на приведенный выше критерий качества работы сети влияет пропускная способность сети как объекта диагностирования, которая соответствует уровню ее самого низкопроизводительного компонента, так называемого узкого места. Им могут быть активное оборудование (коммутатор, концентратор, маршрутизатор, сервер), программное обеспечение, один или несколько параметров настройки оборудования или программного обеспечения, настройки сетевой операционной системы.

 

 

Ниже приведены примеры скрытых дефектов.

«Сетевая плата плохо слышит паузу». Одним из широко распространенных недостатков сетевых плат является дефект, когда датчик паузы в сетевой плате настроен на время, несколько большее, чем 9,6 мкс (для Ethernet). В этом случае, при наличии нескольких активных станций, станция с такой сетевой платой будет ждать более длинной паузы и, следовательно, уступать канал всем остальным станциям, когда те одновременно с ней хотят передавать данные. Свои кадры «глухая» станция будет передавать только в те моменты, когда ни одна другая станция коллизионного домена не имеет кадров для передачи. В результате «глухая станция» будет работать медленней всех остальных станций, однако никаких искаженных кадров в сети не появится.

«Искажение информации после проверки контрольной последовательности CRC». Этот недостаток может встречаться в любом активном сетевом оборудовании и заключается в том, что искажение информации происходит уже после ее приема из сети и проверки CRC. Предположим, что сетевая плата или коммутатор принимает кадр из сети, проверяет поле CRC и, не обнаружив ошибки, передает данные драйверу. Если из-за какой-либо ошибки, например дефекта приемного буфера сетевой платы, данные окажутся искажены, то такое искажение информации может остаться незамеченным сетевой ОС (при отсутствии проверки контрольной суммы на транспортном уровне). Как и в предыдущем случае, никаких искаженных кадров в сети не появится.

«Скрытые дефекты» в микропрограммном обеспечении коммутаторов». Недостатки в микропрограммном обеспечении коммутаторов приводят к удалению кадров из обращения при высокой пиковой нагрузке или к взаимной блокировке портов (высокая пиковая загрузка одного порта вызывает блокировку другого порта). Разработчики пассивных средств диагностики отреагировали на тенденцию увеличения доли «скрытых дефектов» выпуском экспертных систем для обнаружения симптомов «скрытых дефектов». Первой это сделала компания Network General (сейчас Network Associates) в анализаторе протоколов Sniffer, обеспечив себе в течение двух лет доминирующую позицию на рынке анализаторов протоколов. Затем в гонку вступила компания Hewlett-Packard с продуктом LAN Internetwork Advisor, а вслед за ней компания Wandel & Goltermann (сейчас Wavetek Wandel Goltermann) с продуктом Mentor. Сегодня все серьезные игроки на рынке диагностических средств предлагают экспертные системы в качестве интегральной составляющей анализатора сетевых протоколов или дополнительной опции. Таким образом, экспертная система становится обязательным атрибутом для эффективной диагностики сети, что иногда очень существенно удорожает стоимость диагностического средства.

К явным узким местам относятся общие сетевые ресурсы с недостаточной пропускной способностью: неадекватная прикладным задачам, выполняемым в наблюдаемой сети, производительность процессора или дисковой подсистемы сервера, недостаточная пропускная способность коммутатора или канала связи. Узкие места явного типа можно обнаружить с помощью измерения основных системных характеристик компонентов сети, их сравнения между собой и выявления наиболее загруженного компонента, который и будет узким местом.

Скрытыми узкими местами являются такие алгоритмы, процессы или параметры настройки оборудования либо программного обеспечения, из-за которых пропускная способность сети оказывается неадекватно низкой. К категории скрытых узких мест относятся параметры настройки оборудования, вызывающие широковещательные штормы, или параметры настройки прикладного ПО, приводящие к увеличению доли коротких кадров. К категории скрытых узких мест следует отнести и алгоритмы работы прикладного ПО, следствием которых является неэффективное использование пропускной способности сети, например, некорректно реализованная методология поиска файлов, зацикливание запроса, перекрытие запросов с ответами. Для выявления скрытых узких мест пассивные измерения характеристик компонентов сети являются недостаточными, здесь требуется проведение дополнительных экспериментов с воздействием на уровень нагрузки сетевого трафика.

Повышение эффективности работы прикладного ПО не входит в задачи диагностирования сетей. Тем не менее, именно неэффективные алгоритмы работы либо настройки прикладного ПО могут являться причиной неудовлетворительного времени реакции сервера на запрос клиента. Таким образом, в задачи диагностирования компьютерных сетей должна быть включена задача определения среды-носителя неисправности: сеть либо прикладное ПО.

Дж. Хогдалл [4] предлагает классификацию сетевых неисправностей в соответствии с уровнями модели OSI (таблица 1.1). Здесь явно указываются причины сетевых дефектов, что является преимуществом по сравнению с компонентным представлением КС, где оперируемым является только местонахождение дефекта. Тем не менее, здесь модель неисправностей сети не включает в себя структуру сети по ее компонентам, а базируется на уровнях модели OSI, в соответствии с которыми выполняются разработка и функционирование аппаратного и программного обеспечения сети. Таким образом, компонент-носитель дефекта не указан явно, а подразумевается, исходя из наборов функций, задействованных на каждом уровне модели OSI и являющихся стандартными.

 

 

Таблица 1.1 -Классификация сетевых неисправностей по Хогдаллу

Физический уровень
  Неисправности и ошибки в кабельной проводке (соединители, расщепленные пары, обрывы, короткие замыкания некорректная длина линии), отказы повторителей, концентраторов или портов, внешние наводки, насыщение полосы пропускания

 

Канальный уровень Ошибки CRC, коллизии и фрагментация кадров (в Ethernet), ошибки линии, ошибки пакета, очистка кольца и аварийная сигнализация (в Token Ring), проблемы в мостах и коммутаторах (задержки, отбрасывание пакетов, искажения данных), широковещательные штормы
Сетевой уровень Ошибки CRC датаграммы или поля полезной нагрузки, проблемы адресации подсетей, проблемы маршрутизации (задержки, отбрасывания пакетов, искажения данных), широковещательные штормы
Транспортный уровень Повторные транспортные пересылки, избыточная фрагментация или отбрасывание пакетов (поверх IP), размер пересылаемого сегмента, размер приемного окна и его превышение (в TCP)
Сеансовый уровень
  Согласование MTU блока или буфера, поиск ресурсов по логическим именам, регистрация ресурсов по именам, повторная установка соединений.

 

Представительский уровень Несовместимость версий протоколов, замена кодовых таблиц ASCII на EBCDIC, некорректные сведения в базе данных MIB протокола SNMP
Прикладной уровень Зацикливание запросов, перекрытие запросов на чтение или запись файлов, длительный поиск ресурсов, замедленная обработка данных клиентом или сервером, недостаточное заполнение пакетов данными, низкая пропускная способность между оконечными узлами сети.

7. Программные средства диагностики

Команда NET DIAGS

Используется для интерактивной загрузки утилиты диагностики сети.


NET DIAGS -Утилита диагностики Personal NetWare (Network Diagnostics utility) позволяет отслеживать операции сети. Эта информация представляет в основном интерес для тех пользователей, которые хорошо понимают функции сети.


В частности, она позволяет просматривать и отслеживать дру- гие группы в сети, сравнивать трафик клиентов и серверов, сравни- вать использование серверов, информацию о диске клиента, просмат- ривать информацию о конфигурации, статистику по серверам и клиен- там, а также тестировать подключения сервера и клиента.


Утилита сетевой диагностики имеет версии для DOS и MS Win- dows, которые имеют аналогичные функции, однако некоторые средс- тва уникальны и имеются только в версии для DOS.


По умолчанию диагностика сети разрешается при ее инсталляции. Чтобы запретить или вновь разрешить ее после запрещения, используйте утилиту SETUP. Эта утилита автоматически добавляет в файл NET.CFG вашего компьютера команду VLM=NMR.VLM. При включении этой команды при запуске операционной системы автоматически запускается модуль Network Management Responder.


В Windows утилита сетевой диагностики имеет графический интерфейс. Для доступа к ней откройте в Program Manager группу Per- sonal NetWare и выберите пиктограмму Network Diagnostics. Выводится окно NetWork Diagnostics.


Версия для DOS имеет все диагностические средства, включенные в версию для Windows, а также некоторые дополнительные средства. Для доступа к ним наберите в ответ на системную подсказку команду:


PNWDIAGS
или
NET DIAGS


Выводится основное меню. Здесь дополнительное (отсутствующее в версии для Windows) средство Select Data позволяет просмотреть другую рабочую группу сети и управлять именами сетевых файлов не выходя из своей рабочей группы. Save LANalyzer Name File позволяет сохранять файлы, созданные с помощью Associate Network Names, как файлы, доступные для просмотра в LANalyzer for Windows.

 

Для просмотра активности другой рабочей группы выберите в основном меню Select a Workgroup и в выводимом списке рабочих групп задайте нужную. В списке могут выводиться не все рабочие группы. Для поиска нужной группы используйте команду NET WGFIND.


Для просмотра доступны все сегменты сети. Каждая сеть идентифицируется уникальным шестнадцатиричным номером. Для просмотра другой сети выберите в основном меню Select Data и в меню Data Selection Items пункт Select a Network. Выводится список доступных сетевых номеров. Выберите в нем нужную сеть, вернитесь в основное меню и выберите View Configuration. Вы увидите все компьютеры (узлы) сети, включая клиентов и серверы. Показывают только имена узлов. Associate Network Names option позволяет вывести их имена.


Для получения сетевых имен выберите в основном меню Select Data, а в меню Data Selection Items - Select a Network. Выберите сеть и Associate Network Names в меню Data Selection Items. Затем выберите в меню Network Names пункт Find Diagnostics User Names. Для просмотра имен, связанных с каждым узлом, вернитесь в основное меню и выберите View Configuration.


Информация о сетевом трафике позволяет вам выявить причины возникших проблем или перегрузки конкретного компьютера. Эту информацию вы можете получить с помощью Compare Data и Select No- des. В меню Compare Options выберите Traffic. Сетевой трафик будет выводиться для выбранных узлов. Для выхода нажмите Esc.


Просматривая информацию об использовании сервера Server uti- lization, вы можете видеть отношение обрабатываемых компьютером локальных запросов к удаленным и фактическое число обработанных сервером пакетов. Это помогает распределять системные ресурсы. Кроме этого вы можете видеть информацию о подключении, число открытых файлов и активность сервера. Для получения этой информации в меню Compare Options выберите Local/Remote Utilization или Ser- ver Utilization. F1 выводит справочный экран.


Выбор в меню Compare Options пунктов Resource Distribution или Resource Efficiency позволяет получить данные об использовании дисков. С помощью Select View Statistics вы можете выбрать нужные узлы сети и просмотреть статистику по ним, а Choose Test Connections выводит меню Connection Tests и дает возможность проверить связь между выбранными компьютерами сети (пункт Point to point) или все связи между всеми компьютерами.

 

ScanLink

Программа ScanLink предназначена для обработки информации, накопленной прибором в процессе тестирования кабельных сетей. Оно легко устанавливается на любую рабочую станцию. Передача данных из прибора осуществляется через последовательный порт, для чего он комплектуется соответствующим шнуром. Выбором пункта "Upload" данные загружаются в компьютер и сортируются согласно дате проведения тестов. После этого можно удалить информацию из прибора. Программа способна печатать на принтер табличные отчеты, и отчеты для сертификации сетей. Дополнительно ScanLink имеет возможность сохранять данные в стандарте CSV, для обработки информации в таких программах, как Exel, Access и Word, и создватать произвольные для них шаблоны.

 



Поделиться:


Последнее изменение этой страницы: 2017-02-19; просмотров: 1955; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.58.39.23 (0.02 с.)