Цифровые электронные ключи на биполярных транзисторах 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Цифровые электронные ключи на биполярных транзисторах



Чаще всего используются ключи, собранные по схеме с общим эмиттером, как показано на рис. 3.

В ключевом режиме биполярный транзистор работает в режиме насыщения (замкнутый ключ) или режиме отсечки (разомкнутый ключ). Полезно помнить, что в режиме насыщения оба перехода (коллектор-база и эмиттер-база) открыты, а в режиме отсечки - заперты. В режиме насыщения выходную цепь транзистора можно представить эквивалентным источником напряжения, величина ЭДС которого приводится в справочниках ( - напряжение насыщения). Строго говоря, следует учитывать также внутреннее сопротивление этого источника, величина которого определяется крутизной наклона линии граничного режима, однако, в большинстве практически важных случаев для инженерных расчетов можно ограничиться величиной - . Резисторы и должны обеспечивать надежное запирание транзистора при низком уровне управляющего сигнала во всем диапазоне рабочих температур и насыщение при высоком уровне управляющего сигнала.

 

Рисунок 3 - Схема электронного ключа на биполярном транзисторе

При расчете необходимо учитывать обратный ток коллектора, протекающий через резистор , и создающий на нем падение напряжения. Суммарное напряжение на эмиттерном переходе определяется выражением:

,

где - максимальный ток обратный коллектора, - напряжение низкого уровня управляющего сигнала. Очевидно, для надежного запирания транзистора необходимо, чтобы . Необходимо учитывать сильную температурную зависимость обратного тока коллектора, и для расчета выбирать максимальное значение. В противном случае ключ может "подтекать" при изменении температуры.

Открытый транзистор может находиться в активном режиме или режиме насыщения. Для электронных ключей активный режим является невыгодным, так как в этом режиме на коллекторе рассеивается значительная мощность. Поэтому активный режим допустим только в течение переходных процессов (где он, собственно говоря, неизбежен).

Для обеспечения насыщения необходимо, чтобы выполнялось соотношение . Ток базы можно определить по формуле: . Ток насыщения определяется сопротивлением резистора в цепи коллектора, усилительными свойствами транзистора и сопротивлением между коллектором и эмиттером в насыщенном состоянии: . При расчетах целесообразно пользоваться наихудшим значением . Отметим, что при нарушении условия насыщения транзистор переходит в активный режим, что сопровождается ростом напряжения на коллекторе и увеличением мощности рассеяния. В ряде случаев используют иной критерий насыщения - прямое смещение обоих переходов транзистора (база-эмиттер и база-коллектор). В активном режиме переход база-коллектор смещен в обратном направлении.

Используя этот критерий, легко понять, что составной транзистор (по схеме Дарлингтона) не удастся полностью насытить, так как база выходного транзистора в лучшем случае может иметь потенциал, равный потенциалу коллектора.

Необходимой частью проектирования электронных ключей является оценка их динамических свойств, определяющих скорость переключения и потери энергии на этом этапе (динамические потери).

Переходные процессы в электронном ключе на биполярном транзисторе характеризуются длительностью цикла переключения, который можно разделить на несколько отдельных этапов:

  • задержка включения;
  • включение (нарастание тока до величины, соответствующей насыщению);
  • задержка выключения (обусловлена рассасыванием заряда в базе при переходе из режима насыщения в активный режим);
  • выключение (обусловлено уменьшением тока коллектора до значения, соответствующего отсечке).

Необходимо также учитывать процессы заряда ёмкостей монтажа и нагрузки, которые не имеют прямого отношения к транзистору, но могут существенно влиять на длительность переходного процесса в целом.

Рассмотрим характерные участки переходного процесса по временным диаграммам (рис.4).

Рисунок 4 - Переходные процессы в ключе на биполярном транзисторе

  • Транзистор заперт, ток базы определяется обратным током коллектора, заряд в базе практически отсутствует, на выходе ключа высокий уровень.
  • Потенциал на входе ключа скачком увеличивается, начинается заряд входной ёмкости. Токи базы и коллектора не изменяются, пока напряжение на переходе база-эмиттер не превышает напряжения отсечки (время задержки включения).
  • В момент превышения напряжения отсечки открывается эмиттерный переход, и транзистор переходит в активный режим. Инжектируемые в базу неосновные носители нарушают равновесное состояние базы, и начинается накопление заряда. Пропорционально увеличивается ток коллектора, обусловленный экстракцией носителей в область коллектора. Время до перехода в режим насыщения - время включения.
  • В режиме насыщения все токи и напряжения остаются постоянными, при этом заряд в базе продолжает нарастать, хотя и с меньшей скоростью. Заряд, превышающий величину, соответствующую переходу в режим насыщения, называется избыточным.
  • При скачкообразном изменении потенциала на входе ключа ток базы также быстро уменьшается, нарушается равновесное состояние заряда базы и начинается его рассасывание. Транзистор остается насыщенным до тех пор, пока заряд не уменьшится до граничной величины, после чего переходит в активный режим (время задержки выключения).
  • В активном режиме заряд базы и ток коллектора уменьшаются до тех пор, пока транзистор не перейдет в режим отсечки. В этот момент входное сопротивление ключа возрастает. Этот этап определяет время выключения.
  • После перехода транзистора в режим отсечки напряжение на выходе продолжает нарастать, так как заряжаются ёмкости нагрузки, монтажа и ёмкость коллектора.

Очевидно, ключевую роль играет степень (глубина) насыщения транзистора . Для количественной оценки коммутационных параметров можно воспользоваться следующими выражениями:

, , , где .

Существуют схемотехнические методы повышения быстродействия ключа: форсирующая цепочка (рис. 5а) и нелинейная обратная связь (рис. 5б).

а) Ключ с форсирующей цепочкой

б) Ключ с нелинейной обратной связью

Рисунок 5 - схемотехнические приемы повышения быстродействия

Принцип работы форсирующей цепочки очевиден: при отпирании транзистора ток базы определяется процессом заряда форсирующей ёмкости (быстрый переход в режим насыщения), в открытом состоянии ток базы определяется резистором, величина которого выбирается таким образом, чтобы обеспечить неглубокое насыщение транзистора. Таким образом, уменьшается время рассасывания неосновных носителей в базе.

При использовании нелинейной обратной связи применяется диод, включенный между базой и коллектором транзистора. Запертый диод не влияет на работу схемы, когда ключ открывается, диод оказывается смещенным в прямом направлении, а транзистор охваченным глубокой отрицательной обратной связью. Для уменьшения времени выключения необходимо обеспечить малое время восстановления обратного сопротивления диода, для чего применяются диоды с барьером Шоттки. Монолитная структура диод Шоттки - биполярный транзистор называется транзистором Шоттки.

Ключи на биполярных транзисторах имеют ряд недостатков, ограничивающих их применение:

  • Ограниченное быстродействие, вызванное конечной скоростью рассасывания неосновных носителей в базе;
  • Значительная мощность, потребляемая цепями управления в статическом режиме;
  • При параллельном включении биполярных транзисторов необходимо применение выравнивающих резисторов в цепях эмиттеров, что приводит к снижению КПД схемы;
  • Термическая неустойчивость, определяемая ростом тока коллектора при увеличении температуры транзистора.

 

7. (2.3) Полевые транзисторы. Принцип работы, параметры, классификация.

В названии этого класса полупроводниковых приборов отражен факт управления потоком основных носителей заряда, двигающихся в полупроводнике p- или n- типа (канале), посредством электрического поля. Различают полевые транзисторы с управляющим p-n- переходом и полевые транзисторы с изолированным каналом. Первые часто называют просто полевые транзисторы, а вторые – МДП-транзисторы, в названии которых отражена их структура (М – металл; Д – диэлектрик; П – полупроводник) (международный термин — MOSFET (metal-oxide-semiconductor field effect transistor).

Принцип действия полевых транзисторов с управляющим p-n- переходом (полевых транзисторов) можно рассмотреть на примере структуры, показанной на рис. 1.15, а. Область полупроводника, имеющая два вывода, называется каналом, а область с повышенной концентрацией примеси, как и соответствующий вывод, называется затвором. Эти области имеют разный тип проводимости (на рис. 1.15, а изображена структура с каналом n- типа). Один из выводов канала называется истоком (соответствующая область канала является источником подвижных носителей заряда), а другой вывод – стоком (через этот вывод носители заряда вытекают из канала). Между затвором и каналом расположена обедненная подвижными носителями заряда область (p-n- переход), в основном сосредоточенная в канале, как более высокоомном, по сравнению с затвором, слое (в канале концентрация примеси гораздо меньше). Внешние источники напряжения должны подключаться к транзистору в такой полярности, чтобы p-n- переход всегда был смещен в обратном направлении, т.е. закрыт (на рис. 1.15, а обедненная область показана для случая, когда внешние напряжения равны нулю).

Если напряжение между затвором и истоком задать равным нулю, а напряжение между стоком и истоком – больше нуля, то в канале потечет ток основных носителей заряда (в данном случае – электронов), причем с увеличением будет увеличиваться и ток стока . Но если при малых значениях ток растет пропорционально напряжению , то с увеличением эта зависимость становится нелинейной (рис. 1.15, г), что объясняется увеличением сопротивления канала. Это происходит потому, что напряжение приложено не только между стоком и истоком, но и между стоком и затвором (через источник ), причем в полярности, смещающей p-n- пере-ход в обратном направлении, в результате чего p-n- переход (а значит, и обедненная область) расширяется (в сторону канала), а канал сужается. Приращение обедненной области по длине канала будет неравномерным – оно будет наибольшим в районе стока и близким к нулю в районе истока, поскольку падение напряжения на разных участках канала под действием протекающего тока будет разным (отсчитанное от истока падение напряжения, которое прикладывается к p-n- переходу, максимально на стоке и равно нулю на истоке). При достаточно больших напряжениях ток стока может резко увеличиться, что связано с электрическим пробоем p-n- перехода.

Если при постоянном напряжении увеличивать обратное напряжение , то обедненная область p-n- перехода будет расширяться в сторону канала равномерно, что приведет к увеличению сопротивления канала и уменьшению тока стока (см. сток-затворные вольт-амперные характери­стики на рис. 1.15, д). При некотором достаточно большом напряжении (напряжении отсечки ) ток стока прекращается, поэтому стоковая характеристика (рис. 1.15, г) при пройдет по оси напряжений . Поскольку во входной цепи (цепи затвор–исток) ток практически отсутствует (большое сопротивление закрытого p-n- перехода), это позволяет управлять значительными токами выходной цепи (цепи сток–исток), по существу не затрачивая энергии входного сигнала, в чем и проявляются усилительные свойства полевого транзистора. Условные графические обозначения полевых транзисторов с каналом n - и p -типа показаны на рис. 1.15, б и в.

Полевые транзисторы с изолированным каналом (МДП-транзисторы) подразделяются на транзисторы со встро­енным и индуцированным каналом. Структура МДП-транзистора со встроенным каналом представляет собой подложку из полупроводника p- или n -типа, в которую встраивается канал в виде полупроводника другого типа проводимости (на рис. 1.16, а канал n -типа). Полупроводниковый канал отделен от металлического затвора (З) тонким слоем диэлектрика, в качестве которого (в случае кремниевой подложки) чаще всего используется двуокись (окисел) кремния (отсюда еще одно название МДП-транзисторов – МОП-транзисторы). К каналу через области с повышенной концентрацией примеси (на рис. 1.16, а области ) подсоединяются металлические выводы, называемые, как и соответствующие области канала, стоком (С) и истоком (И). Полупроводниковая подложка (чаще всего кремний), изолированная от внешней среды диэлектриком (), также имеет металлический вывод (П), который обычно соединяется с истоком для того, чтобы p-n- переход между каналом и подложкой был закрыт. Это обеспечивает изоляцию канала от подложки при нормальной полярности напряжения (рис. 1.16, а).

У МДП-транзисторов со встроенным каналом нелинейность стоковых характеристик (рис. 1.16, г) объясняется тем, что при увеличении напряжения , подсоединенного одним своим зажимом к стоку, а другим к затвору (через источник ), подвижные носители заряда вытесняются из области канала, расположенной под затвором, в области с повышенной концентрацией примеси ( на рис. 1.16, а), что приводит к увеличению сопротивления канала. Происходящее при этом обеднение канала подвижными носителями заряда, как и в случае транзистора с управляющим p-n- переходом, будет по длине канала неравномерным (наибольшим у стока). Повышение по модулю напряжения между затвором и истоком , при указанной на рис. 1.16, а полярности, также приводит к обеднению канала, но только равномерному по длине канала (без учета областей ), поэтому стоковые характеристики при пройдут ниже относительно характеристики, снятой при (рис. 1.16, г).

МДП-транзисторы со встроенным каналом могут работать и в режиме обогащения при другой (по сравнению с показанной на рис. 1.16, а) полярности напряжения . В этом режиме основные носители заряда (в данном случае электроны) под действием поля затвора будут втягиваться в канал из областей ( в случае подложки n -типа), тем самым обогащая канал подвижными носителями заряда (которых в канале при сравнительно немного), поэтому стоковые характеристики в режиме обогащения расположатся выше характеристики, снятой при . Сток-затвор­ные вольт-ам­пер­ные характеристики (рис. 1.16, д) могут быть построены по данным стоковых характеристик (рис. 1.16, г), для чего необходимо при выбранных значениях провести прямые, параллельные оси токов, и отметить точки пересечения указанных прямых со стоковыми характеристиками. Поскольку у МДП-транзисторов канал от затвора изолирован диэлектриком, входное сопротивление (сопротивление участка затвор–исток) таких транзисторов очень велико. У МДП-тран­зи­сторов с каналом p -типа (условное графическое обозначение показано на рис. 1.16, в) полярности напряжений и противоположны тем, что присущи транзисторам с каналом n -типа, но стоковые характеристики транзисторов с p -каналом, как и транзисторов с n -кана­лом, принято изображать в первом квадранте.

Отличительной особенностью МДП-транзисторов с индуцированным каналом является отсутствие встроенного канала (рис. 1.17, а), поэтому у них стоковый ток равен нулю не только при нулевом или отрицательном (в случае p -подложки) напряжении на затворе, но и при небольших положительных напряжениях, поскольку на пути между стоком и истоком находятся два встречно-включен­ных p-n- перехода. Только при напряжении , превышающем пороговое напряжение , в той части подложки, которая расположена не­по­средственно под затвором, наводится (индуцируется) канал, который образуется из втянутых полем затвора неосновных носителей заряда (одновременно из указанной области подложки полем затвора вытесняются основные носители заряда). Чтобы облегчить образование канала и улучшить его управляемость, подложку МДП-транзистора делают из полупроводника с низкой концентрацией примеси. При увеличении напряжения канал обогащается подвижными носителями заряда, и ток стока увеличивается (рис. 1.17, д). Механизм действия напряжения , обусловливающий форму стоковых характери­стик МДП-транзисторов с индуцированным каналом (рис. 1.17, г), примерно такой же, как и у транзисторов со встроенным каналом. Условное графиче­ское обозначение МДП-транзи­сто­ров с индуцированным n- каналом пока­зано на рис. 1.17, б, а с p- каналом – на рис. 1.17, в. МДП-транзисторы с индуцированным каналом применяются гораздо шире по сравнению с транзисторами со встроенным каналом, что вызвано, в первую очередь, отсутствием у них тока стока при нулевом напряжении на затворе.

Стоковые характеристики, приведенные на рис. 1.15, г – 1.17, г, сняты при напряжениях , меньших напряжения электрического пробоя, и при таких токах стока, когда мощность, рассеиваемая транзистором в виде тепла, меньше допустимой мощности, выше которой возможен тепловой пробой.

Существует разновидность МДП-транзисторов с индуцированным каналом – МНОП-транзисторы, у которых между пленкой двуокиси кремния (О) и металлическим затвором (М) помещен слой еще одного диэлектрика – нитрида кремния (Н). Характерной особенностью таких транзисторов является то, что у них путем подачи на затвор импульса напряжения определенной полярности можно установить низкий или высокий уровень порогового напряжения (например, 3 или 15 вольт). Это связано с тем, что под действием импульсного напряжения определенной амплитуды на границе между нитридом кремния и двуокисью кремния происходит накопление зарядов, которые могут сохраняться в течение нескольких лет.

Относительно малых приращений напряжений, вызванных действием источника входного сигнала, транзистор можно рассматривать как линейный элемент электрической цепи и представлять в виде малосигнальной эквивалентной схемы. Эквивалентные схемы подразделяются на два класса: схемы замещения и моделирующие схемы. Схема замещения составляется на основе уравнений эквивалентного четырехполюсника, а моделирующая схема – путем моделирования физических процессов в транзисторе.

В моделирующей эквивалентной схеме полевого тран­зистора, приведенной на рис. 1.18, не показаны сопротивления между затвором и каналом, что оправданно, поскольку их значения очень большие: 106…109 Ом у полевых транзисторов с управляющим p-n- переходом и 1012…1014 Ом у МДП-транзисторов. Все элементы моделирующей схемы – дифференциальные, т.е. определенные для приращений токов и напряжений, обозначенных в схеме строчными буквами. Источник тока, действующий в выходной цепи, управляется входным напряжением , причем эффективность управления отображается параметром “крутизна”, показывающим насколько изменится ток стока при изменении напряжения и постоянном напряжении : .

Типовые значения крутизны полевых транзисторов – 1…25 мА/В. Внутреннее сопротивление

на начальных линейных участках стоковых характеристик (при малых напряжениях ) моделирует сопротивление материала канала, а на пологих участках – еще и процесс обеднения канала под действием (в этом режиме у различных типов транзисторов ). Внутреннее сопротивление и крутизну s в рабочей точке (т.е. при заданных значениях , и ) можно вычислить, определив соответствующие приращения на графиках стоковых и сток-затворных ВАХ. Ёмкости и моделируют барьерную ёмкость закрытого p-n- перехода между затвором и каналом (у транзисторов с управляющим p-n- переходом) или ёмкость плоского конденсатора, образованного металлическим затвором и полупроводниковым каналом (у МДП-транзисторов); у маломощных транзисторов Ёмкость полевых транзисторов, включая и транзисторы с управляющим p-n- переходом, является барьерной ёмкостью закрытого p-n- перехода между стоком и подложкой; она обычно меньше ёмкостей и .

Условные графические обозначения полевых транзисторов приведены ниже. Графическое обозначение транзистора содержит максимальную информацию об его устройстве. Канал транзистора изображается вертикальной штриховой или сплошной линией. Штриховая линия обозначает индуцированный канал, а сплошная – встроенный. Исток и сток действуют как невыпрямляющие контакты, поэтому изображаются под прямым углом к каналу. Подложка изображается как электрод со стрелкой, направление которой указывает тип проводимости канала. Затвор изображается вертикальной линией, параллельной каналу. Вывод затвора обращен к электроду истока.

 

Рис. УГО полевых транзисторов



Поделиться:


Последнее изменение этой страницы: 2017-02-10; просмотров: 1207; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.140.185.170 (0.021 с.)