Абсолютно сходящиеся ряды и их свойства. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Абсолютно сходящиеся ряды и их свойства.



Пусть дан знакопеременный ряд. Рассмотрим ряд, составленный из абсолютных величин его членов |a1|+|a2|+…+|an|+… Очевидно, что это ряд с положительными членами.

Ряд называется абсолютно сходящимся, если сходится ряд составленный из его членов.

Теорема. Всякий абсолютно сходящийся ряд сходится. Сумма такого ряда равна разности между суммой его плюс-ряда и суммой минус-ряда.

Доказательство.

Пусть ряд а12+…+аn+… сходится абсолютно, т.е. сходится ряд |a1|+|a2|+…+|an|+… Обозначим частичные суммы ряда из модулей его членов через Tn. Имеем Tn= Tn++ Tn- (где Tn+ - некоторая частичная сумма плюс-ряда, Tn- - частичная сумма минус-ряда.) Ввиду сходимоти ряда |a1|+|a2|+…+|an|+…его частичные суммы Tnограничены некоторым числом С. Тогда следует, Tn1+£С и Tn2-£С, т.е. частичные суммы минус- и плюс-ряда также ограничены сверху числом С. Согласно критерию сходимости рядов с положительными членами отсюда вытекает сходимость плюс- и минус-рядов, т.е. существуют пределы T+=lim T+k и T-=lim T-l. Если теперь

k®µ l®µ

из равенства перейти к пределу при n®µ, то получим limTn=T+-T-, ч.т.д.

l®µ

Условно сходящиеся ряды.

Ряд а12+…+аn+… называется условно сходящимся, если он сходится, а ряд, составленный из модулей его членов, расходится.

(теорема Римана. Если ряд сходится условно, то в результате перестаноски его членов можно получить ряд, имеющий любую сумму, а также расходящийся ряд.)

 

Ряды с комплексными членами. (cо слов Гончаренко)

Комплексное число представляется в виде a+b*i, где а – действительная часть числа, i – мнимая единица (поясняю: мнимая единица – единица, квадрат которой равен «-1»).

Если суммы действительных(Sаn) и мнимых (Sbni) частей комплексных чисел сходятся, то сходится и весь ряд комплексных чисел. (аналогичны и остальные определения.)


7. Свойства правильно сходящихся рядов: непрерывность суммы ряда, почленное дифференцирование и интегрирование. (!!предполагается равномерно сход=правильно сход).

Функция S(x),хÎW является суммой ряда, если S(x) =lim n→∞ S(x), где S(x)= f 1(x)+ f 2(x)+…+ fn (x)

Если S(x), х ÎL (LÍΩ) является суммой ряда f 1(x)+ f 2(x)+…+ fn (x)+…=n=1 fn (x) (функциональный ряд), то говорят, что рядсходится на множестве L функции S(x).

Функциональный ряд называется равномерно сходящимся на множестве L к функции S(x), если для любого числа e>0 существует номер N такой, что при n³N cразу для всех хÎL выполняется неравенство ½S(x) -S n (x)½<e

Если функциональный ряд сходится на множестве L, то на этом множестве сходимость не обязана быть равномерной, однако на некотором подмножестве

множества L сходимость может оказаться уже равномерной.

Признак равномерной сходимости Вейерштрасса.

Если члены функционального ряда f 1(x)+ f 2(x)+…+ fn (x)+… удовлетворяют на множестве L неравенством ½ fn (x)½≤Сn (n=1,2…), где Сn – члены сходящегося числовогоряда С1+С2+…+ Сn+… то функциональный ряд сходится на множестве L равномерно.

Свойства:

Если функции fn (x) непрерывны на [a,b], составленный из них ряд f 1(x)+ f 2(x)+…+ fn (x)+…, то

1.Функция f (x) на [a,b] непрерывна

2. a b f (x)dx=. a b f 1(x)dx+…+. a b fn (x) dx+…

Если fn (x) имеют непрерывную производную на [a,b] и на этом отрезке

а)ряд f 1(x)+ f 2(x)+…+ fn (x)+… сходится к f (x)

б)ряд f 1 ' (x)+ f 2 ' (x)+…+ fn' (x)+… сходится равномерно, то f (x) имеет на этом отрезке непрерывную производную f ' (x)= f 1 ' (x)+ f 2 ' (x)+…+ fn' (x)+…

 

Степенные ряды.

Опр. Выражение вида а0+а1х+а2х2+…+акхк+…, (*)

где а0, а1,а2,… - некоторая числовая последовательность наз степенным рядом.

а0,а1,а2,…- коэффициенты степенного ряда.

Если х придавать числовые значения, то будем получать числ. Ряды, которые могут сходиться и расходиться. Множество Х, при которых ряд (*) сходится, называется областью сходимости.

Теорема Абеля.

1)Если ряд (*) сходится в некоторой точке х0≠0, то этот ряд будет сходится и при всех х, удовлетворяющих условию: |х|<|х0|.

2)Если ряд (*) расходится в т. х1≠0, то этот ряд расходится при всех x: |х|>|х1|.

Док-во.1). По усл степенной ряд а0+а1х0+а2х02+…+акх0к+…(**) сходится, поэтому акх0к →0, при к→∞. Значит, сходящаяся последовательность {акх0к}

ограничена, т.е. сущ-т константа М такая, что |акх0к|<M для всех к=0,1,2…

Рассмотрим |а0|+|а1х0|+|а2х02|+…+|акх0к|+….(***)

Пусть |х|<|х0|, тогда |акхк|=|акх0к||х/х0|<М|х/х0|к, причем |х/х0|<1. Поэтому члены ряда (***) не превосходят соответствующих членов сходящегося ряда

М+М|х/х0|+М|х/х0|2+…+М|х/х0|к+…- суммы бесконечно убывающей геометрической прогрессии. Поэтому ряд (***) сходится, а ряд (**) сходится абсолютно.

2)Предположим, что ряд(**) расходится при х=х1, но для некоторого х:| х |>х1 По первой части теоремы ряд (**) сходится абсолютно при х=х1, следовательно получили противоречие.



Поделиться:


Последнее изменение этой страницы: 2017-02-09; просмотров: 367; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.22.249.158 (0.009 с.)