Класифікація запам’ятовувальних пристроїв. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Класифікація запам’ятовувальних пристроїв.



Лекція № 8

Класифікація та характеристики сучасних ПЗП

 

За способом організації доступу до пам'яті ПЗП – це пристрої з безпосереднім (довільним) доступом.

За методом пошуку необхідного слова (необхідної ділянки) – це адресні пристрої (тобто інформація відшукується за вказаною адресою).

По типу фізичного середовища, яке здійснює зберігання інформації, ПЗП, як правило є напівпровідниковими пристроями.

За способом зберігання інформації ПЗП мають статичну пам'ять.

За способом запису (перезапису) інформації ПЗП можна класифікувати згідно рис. 1.

 
 

 


Рис.1 Класифікація ПЗП за способом запису (перезапису) інформації.

 

Основними характеристиками мікросхем постійної пам’яті є:

1. Ємність (Обсяг пам'яті). Нагадаємо, що загальна ємність мікросхеми пам’яті це добуток глибини адресного простору (Depth Adress – кількість біт інформації, яке зберігається в комірках кожної матриці) на кількість ліній вводу/виводу (розрядів). Для сучасних ПЗП, в залежності від призначення цей показник може змінюватися в широких межах від декількох Кбайт до декількох Гбайт (FLASH пам’ять).

2. Розрядність. Нагадаємо, що цей показник визначається кількістю бітів розміщених в комірках пам’яті.

3. Швидкодія. Визначається часом доступу для операцій запису або читання інформації. Для сучасних ПЗП він складає одиниці-десятки мкс.

4. Часова діаграма. (або кількість тактів, які необхідні МП для виконання операцій запису або зчитування даних. Читання даних з ПЗП, звичайно, потребує двох тактів.

6. Кількість циклів запису – стирання (Для РПЗП).До 106.

7. Час стирання мікросхеми. Менше 10 мс (для ЕЕРROM).

8. Надійність. Інформація може зберігатися десятки років.

Програмувальні постійні запам’ятовувальні пристрої.

 

Більш складний варіант – одноразово програмовані ПЗП. Ця мікросхема має практично ту ж саму структуру, що й масочні ПЗП, але у неї є одна дуже суттєва відмінність: вона виготовляється виробниками "порожньою" і розробники різноманітної комп'ютерної техніки можуть записувати інформацію до неї самостійно (звичайно за умов наявності спеціального обладнання). Програмування таких ПЗП відбувається шляхом електричного перепалення перемичок у мікросхемі або шляхом випалення керуючого переходу у транзисторах. Зрозуміло, що єдиний шлях виправити помилку програмування такого ПЗП – це викинути його у смітник і "пропалити" новий. Такі мікросхеми називаються програмовані ПЗП (ППЗП) і зображаються на принципових схемах як показано на рис. 5.

Програмовані ПЗП виявилися дуже зручними для малосерійного и середньосерійного виробництва. Але ж при розробці радіоелектронних пристроїв часто приходиться змінювати записану в ПЗП програму. Тому з’явився наступний варіант ПЗП – репрограмовані, які дозволяють багаторазово змінювати записану у ПЗП інформацію за умов попереднього стирання старої.

FLASH пам’ять.

Зараз набув дуже широкого розповсюдження новий клас ПЗП з електричним стиранням, який отримав назву флеш-пам'яті (від англійського flash – спалах, блискавка). Його в певній мірі можна розглядати як симбіоз ОЗП та ПЗП, через те, що він має швидкодію, що наближується до показників ОЗП, і в той же час є енергонезалежним ЗП ЕЕРROM (УГП зображено на рис. 9).

Справа у тому, що комірки пам'яті у ОЗП та ПЗП мають вигляд двомірного масиву, що дозволяє читати і писати кожен біт окремо. На відміну від них, флеш-пам'ять, яка вперше була запропонована компанією TOSHIBA виготовлена у вигляді блоків місткістю від 512 б до 256 Кб. Такі блоки записуються та стираються за один машинний такт, через що вони працюють набагато швидше ніж ПЗП з електричним стиранням. Крім того, для запису даних до флеш-пам'яті не потрібна додаткова напруга, що дає змогу робити це там, де вона встановлена. В той же час для запису ПЗП з електричним стиранням потрібне спеціальне обладнання. Нажаль цей тип пам'яті не придатний для використання у якості ОЗП, якщо передбачається побайтовий запис інформації. Справа в тому, що для зміни одного байту потрібно переписати в буфер увесь блок, де утримається цей байт, потім стерти вміст блоку, змінити вміст байта, після чого провести запис зміненого в буфері блоку. Така схема значно знижує швидкість запису невеликих об’ємів інформації в довільні ділянки пам’яті, але ж значно збільшує швидкодію при послідовному запису даних великими порціями. Її життєвий цикл суттєво менший за цикл мікросхем ОЗП – усього лиш 100-300 тисяч циклів перезапису. Флеш-пам'ять використовують для запису програми BIOS (таким чином спрощується її модернізація – upgrade), там де неможливо використовувати накопичувачі на жорстких дисках. Цей тип пам'яті випускають у вигляді так-званих флеш-карт з обсягом до одиниць Гб, які застосовуються у сучасних кишенькових комп'ютерах, цифрових фотокамерах та диктофонах, електронних органайзерах.

Організація FLASH пам’яті.

 

Комірка FLASH - пам’яті складається із МОН транзистора з плаваючим затвором, тобто за технологією виготовлення подібна комірці пам’яті ЕРROM та ЕЕРROM ПЗП. Але ж за рахунок застосування надтонкого шару діелектрика запис та стирання (інжекція заряду методом СНЕ (channel hot electrons) або його екстракція методами тунелювання) здійснюється без застосування підвищених напруг. Одна комірка зберігає один біт інформації (в сучасних розробках два, так звані багаторівневі комірки MLC) і, як правило, наявність заряду сприймається як логічний 0, відсутність як логічна 1.

При читанні, в відсутності заряду на плаваючому затворі, під дією додатного поля на керуючому затворі, утворюється n- канал між витоком і стоком, і виникає струм (логічна 1). При наявності заряду канал не з’являється і струм не виникає (логічний 0).

Лекція№9

Базова архітектура CISC МК.

В дійсний час, серед усіх 8-розрядних МК, сімейство MCS51 є безсумнівним чемпіоном з кількості різновидів і кількості компаній, що випускають його модифікації. Воно одержало свою назву від першого представника цього сімейства -- МК і8051, випущеного в 1980. Вдалий набір периферійних пристроїв, можливість гнучкого вибору зовнішньої або внутрішньої програмної пам'яті і невисока вартість забезпечили цьому МК успіх на ринку. З погляду технології МК і8051 був для свого часу дуже складним виробом -- у кристалі було використано 128 тис. транзисторів, що в 4 рази перевищувало кількість транзисторів у 16-розрядному мікропроцесорі 8086.

Важливу роль у досягненні такої високої популярності сімейства 8051 зіграла відкрита політика фірми Intel, спрямована на широке поширення ліцензій на ядро 8051 серед великої кількості провідних компаній - виробників світу.

У результаті на сьогоднішній день існує більш 200 модифікацій МК сімейства 8051, що випускаються майже 20-ю компаніями. Ці модифікації містять у собі кристали з найширшим спектром периферії: від простих 20-вивідних пристроїв з одним таймером до 100-вивідних кристалів з 10-розрядними АЦП, масивами таймерів-лічильників, апаратними 16-розрядними помножувачами і 64 Кб програмної пам'яті на кристалі. Основними напрямками розвитку є: збільшення швидкодії (підвищення тактової частоти і вдосконалення архітектури), збільшення обсягу ОЗП і FLASH - пам'яті на кристалі з можливістю внутрісхемного програмування, використання складних периферійних пристроїв.

Усі МК із сімейства MCS-51 мають загальну систему команд. Наявність додаткового устаткування впливає тільки на кількість регістрів спеціального призначення.

Лекція № 8

Класифікація запам’ятовувальних пристроїв.

У сучасній ПЕОМ машині пам'ять, поза всяких сумнівів, посідає друге за важливістю місце після процесору. Параметри оперативної пам'яті у значній мірі визначають ефективність виконання різноманітних задач. Підвищення технічних та експлуатаційних характеристик сучасних МПС (особливо їх можливостей що до розв'язання складних задач, які потребують обробки великих масивів інформації) перш за все пов'язано з підвищенням ємності та швидкодії ЗП. Адже не достатньо тільки мати потужну та швидкодіючу пам'ять; не менш важливим є створення "сприятливих умов" для максимального використання її потенційних можливостей.

Для пам’яті сучасних ПК характерний ієрархічний принцип побудови. Тобто, у складі підсистеми пам’яті повинні бути ЗП, яки виконують різні функції та побудовані на основі різних принципів, тому що вимоги до пристроїв пам’яті дуже суперечливі та не можуть бути виконані у єдиному пристрої.

За виконуваними функціями розрізняють такі типи ЗП:

- оперативні запам'ятовуючі пристрої (ОЗП, RAM – Random Access Memory);

- постійні запам'ятовуючі пристрої (ПЗП, ROM – Read Only Memory);

- зовнішні запам'ятовуючі пристрої (ЗЗП) або накопичувачі інформації.

Оперативний запам'ятовуючий пристрій-- це пам'ять комп'ютера, призначена для зберігання даних, адрес та програм, які використовує комп'ютер в даний момент часу. У комп'ютері ОЗП використовують як для зберігання програм і даних користувача, так і для зберігання системних програм і даних, які забезпечують власне функціонування самої обчислювальної машини. Сукупність останніх отримала назву операційної системи.

Постійні запам'ятовуючі пристрої призначені для зберігання певної одноразово записаної до них інформації, яка має зберігатися навіть за умов знеструмлення комп'ютеру. Такою інформацією є базові системні дані і програми, потрібні для завантаження операційної системи та керування роботою зовнішніх пристроїв комп'ютеру. Таким чином, постійний запам'ятовуючий пристрій- - це пам'ять комп'ютера, призначена для зберігання службових програм і даних, які не можуть бути змінені у процесі його роботи.

Зовнішня пам'ять може розглядатися як архівна пам'ять, призначена для довготермінового зберігання великих масивів інформації.

Підсумовуючи вищесказане, взаємодію типів ЗП можна зобразити схемою, що подана на рис.1.

За способом доступом до інформації розрізняють такі типи ЗП:

1. ЗП з довільним доступом до інформації;

2. ЗП з прямим доступом до інформації;

3. ЗП з послідовним доступом до інформації.

Довільний доступ до інформації передбачає можливість прямого безпосереднього звернення до будь-якої комірки пам'яті не залежно від місця її розташування у ЗП. Треба також зазначити, що при цьому час, потрібний для такого звернення теж не залежить від місця розташування відповідної комірки у масиві пам'яті.

Прямий доступ до інформації передбачає можливість також прямого безпосереднього звернення до будь-якої масиву (кластера) пам'яті не залежно від місця її розташування у ЗП.

Але ж час, потрібний для такого звернення залежить від місця розташування відповідного кластера у масиві пам'яті.

Послідовний доступ передбачає можливість звернення до комірок пам'яті тільки у порядку черги, тобто для запису чи читання будь-якої комірки треба перш за все "перегорнути" усі попередні комірки.Таку систему звернення можна порівняти із способом отримання доступу до певного запису на магнітофонній касеті. Перш ніж отримати його, треба перемотати касету до потрібного місця. Звичайно у цьому випадку неминучі великі витрати часу, тому такий метод доцільно застосовувати лише для архівних пристроїв зберігання даних на магнітній стрічці, які отримали назву стримерів.

За типом носіїв інформації розрізняють: напівпровідникові, магнітні та оптичні ЗП.

Напівпровідникові ЗП, побудовані з використанням біполярних та МОН (Метал-Окис-Напівпровідник) - транзисторів, використовують для реалізації швидкодіючої оперативної пам'яті, до якої висуваються досить високі вимоги. Ці пристрої використовують властивість деяких електронних пристроїв необмежений час знаходитись у одному з двох стійких станів ("0" або "1") або зберігати певний електричний заряд, як ознаку запису у ЗП одного біту інформації. Постійні ЗП також напівпровідникові.

Магнітні ЗП використовують властивість тонких плівок, виготовлених з феросплаву на основі оксиду хрому, або кобальту (раніше використовувався оксид заліза) довгий час зберігати остаточну намагніченість після впливу на них магнітним полем. Невелика область магнітної поверхні (домен) під впливом магнітного поля впорядковує свої елементарні вектори намагнічування, що розглядається як запис одного біту інформації. До таких пристроїв найбільш важливою є велика інформаційна ємність та низька вартість зберігання одиниці інформації. Найбільшого розповсюдження набули накопичувачі на магнітних дисках (гнучких та жорстких) та магнітних стрічках.

Оптичні ЗП, або пристрої пам'яті на лазерних дисках використовують властивість фоточутливого шару, нанесеного на пластикову поверхню диску, змінювати колір або форму під впливом сильно сфокусованого лазерного променя. Наявність у цьому шарі, захищеному зверху шаром лаку, мікрозаглиблення або мікрокрапки іншого кольору після її експозиції променем лазеру, сприймається як запис одного біту інформації. У порівнянні з магнітними носіями інформації, лазерні диски є більш надійними і можуть зберігатися набагато довше.

Класифікація ЗП за способом доступу до інформації та типом носія зображена на рис.2.

 

 

Рис. 2. Класифікація пристроїв пам’яті за способом доступа до інформації та типом носія.

Основними показниками ЗП є:

1. Обсяг пам'яті пристрою, який характеризує його здатність зберігати велику кількість програм і даних.

2. Розрядність пам'яті, яка визначає діапазон чисел, розміщених у комірках. Найбільш розповсюджена на даний момент розрядність -- 64 та 128. Цей показник тісно пов'язаний з розрядністю шини даних процесору, адже саме по цій шині інформація з пам'яті надходитиме до нього на обробку.

3. Швидкодія пам'яті, яка характеризує витрати часу на занесення даних до неї (запис) та на отримання їх назад (читання). Діапазон цього показника досить широкий: від кількох мілісекунд для накопичувачів на жорстких дисках і до наносекунд для сучасних ОЗП.

Енергоспоживання та геометричні розміри визначають ефективність використання того чи іншого типу пам'яті у конкретному обчислювальному пристрої. Особливо гостро стоїть проблема зниження розмірів та споживаної електроенергії для портативних переносних комп'ютерів, які мають працювати у автономному режимі 4-5 годин

 



Поделиться:


Последнее изменение этой страницы: 2017-02-09; просмотров: 761; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.118.30.253 (0.031 с.)