Введение. Понятие моделирования. Способы представления моделей 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Введение. Понятие моделирования. Способы представления моделей



Введение. Понятие моделирования. Способы представления моделей

Оглавление

Понятие модели и моделирования.

Процесс проектирования модели.

Инструменты и технологии проектирования модели.

Основные подсистемы при проектировании

Пример различных типов задач, решаемых на простейшей модели

Различные формы модели

Этапы процесса моделирования

Роль модели и адекватность модели

Физические(материальные) и математические модели

Выбор метода моделирования

Рис. 1.5. Траектория движения тела, брошенного под углом к горизонту

Модель связывает две переменные y и x законом f (y, x) = 0. Модель может быть расширена некоторыми исходными данными, например, так: y = – x 2 + 4 · x – 3, y = 0 (интересуют не все возможные значения y, а только точки на поверхности Земли). y = 0 — это тоже закон, но более мелкого масштаба. Такие уравнения могут появляться и исчезать в зависимости от исследуемой проблемы. Обычно их называют гипотезами.

Вопрос: x =?

Теперь модель и вопрос вместе образовали задачу:

y = – x 2 + 4 · x – 3, y = 0, x =?

Трактовать задачу можно так: при каких значениях x тело окажется на поверхности Земли?

Рис. 1.7. Структурное изображение модели в среде моделирования

Модель — закономерность, преобразующая входные значения в выходные. А как известно из математики, с выражением Y = M(X) можно решить три вида задач, которые приведены в табл. 1.1.

  Известно Неизвестно Решение
Прямая задача X, M Y Y = M (X)
Обратная задача Y, M X X = M –1(Y)
Задача настройки модели X, Y M M = f (X, Y)

Таблица 1.1.Формы записи модели и типы решаемых задач

 

Различные формы модели.

Модели могут принимать различную форму, в зависимости от способа мышления исследователя, его взгляда на мир, используемой алгебры. Использование различных математических аппаратов впоследствии приводит к различным возможностям в решении задач.

Модели могут быть:

  • феноменологические и абстрактные;
  • активные и пассивные;
  • статические и динамические;
  • дискретные и непрерывные;
  • детерминированные и стохастические;
  • функциональные и объектные.

Феноменологические модели сильно привязаны к конкретному явлению. Изменение ситуации часто приводит к тому, что моделью воспользоваться в новых условиях достаточно сложно. Это происходит оттого, что при составлении модели её не удалось построить с точки зрения подобия внутреннему строению моделируемой системы. Феноменологическая модель передаёт внешнее подобие.

Абстрактная модель воспроизводит систему с точки зрения её внутреннего устройства, копирует её более точно. У неё больше возможностей, шире класс решаемых задач.

Активные модели взаимодействуют с пользователем; могут не только, как пассивные, выдавать ответы на вопросы пользователя, когда тот об этом попросит, но и сами активируют диалог, меняют его линию, имеют собственные цели. Все это происходит за счёт того, что активные модели могут самоизменяться.

Статические модели описывают явления без развития. Динамические модели прослеживают поведение систем, поэтому используют в своей записи, например, дифференциальные уравнения, производные от времени.

Дискретные и непрерывные модели. Дискретные модели изменяют состояние переменных скачком, потому что не имеют детального описания связи причин и следствий, часть процесса скрыта от исследователя. Непрерывные модели более точны, содержат в себе информацию о деталях перехода.

Детерминированные и стохастические модели. Если следствие точно определено причиной, то модель представляет процесс детерминировано. Если из-за неизученности деталей не удаётся описать точно связь причин и следствий, а возможно только описание в целом, статистически (что часто и бывает для сложных систем), то модель строится с использованием понятия вероятности.

Распределённые, структурные, сосредоточенные модели. Если параметр, описывающий свойство объекта, в любых его точках имеет одинаковое значение (хотя может меняться во времени!), то это система с сосредоточенными параметрами. Если параметр принимает разные значения в разных точках объекта, то говорят, что он распределён, а модель, описывающая объект, — распределённая. Иногда модель копирует структуру объекта, но параметры объекта сосредоточенны, тогда модель — структурная.

Функциональные и объектные модели. Если описание идёт с точки зрения поведения, то модель построена по функциональному признаку. Если описание каждого объекта отделено от описания другого объекта, если описываются свойства объекта, из которых вытекает его поведение, то модель является объектно-ориентированной.

Каждый подход имеет свои достоинства и недостатки. Разные математические аппараты имеют разные возможности (мощность) для решения задач, разные потребности в вычислительных ресурсах. Один и тот же объект может быть описан различными способами. Инженер должен грамотно применять то или иное представление, исходя из текущих условий и стоящей перед ним проблемы.

Приведённая выше классификация является идеальной. Модели сложных систем обычно имеют комплексный вид, используют в своём составе сразу несколько представлений. Если удаётся свести модель к одному типу, для которого уже сформулирована алгебра, то исследование модели, решение задач на ней существенно упрощается, становится типовым. Для этого модель должна быть различными способами (упрощением, переобозначением и другими) приведена к каноническому виду, то есть к виду, для которого уже сформулирована алгебра, её методы. В зависимости от используемого типа модели (алгебраические, дифференциальные, графы и т. д.) на разных этапах её исследования используются различные математические аппараты.

Полный (расширенный) вариант схемы, представленной на рис. 1.8.

 

 

 

Рис. 1.8. Схема процесса моделирования (уточнённый вариант)

Физические модели

В основу классификации положена степень абстрагирования модели от оригинала. Предварительно все модели можно подразделить на две группы: материальные (физические) и абстрактные (математические) (рис. 9.1).

Физической моделью обычно называют систему, которая эквивалентна или подобна оригиналу, либо у которой процесс функционирования такой же, как у оригинала, и имеет ту же или другую физическую природу. Можно выделить следующие виды физических моделей: натурные, квазинатурные, масштабные и аналоговые.

Натурные модели – это реальные исследуемые системы. Их на­зывают макетами и опытными образцами. Натурные модели имеют полную адекватность с системой-оригиналом, что обеспечивает высокую точность и достоверность результатов моделирования. Процесс проектирования систем завершается зачастую испытанием опытных образцов.

 

Рис. 9.1. Классификация моделей

Квазинатурные модели представляют собой совокупность натурных и математических моделей [4]. Этот вид моделей используется в случаях, когда математическая модель части системы не является удовлетворительной (например, модель человека-оператора) или когда часть системы должна быть исследована во взаимодействии с остальными частями, но их еще не существует, либо их включение в модель затруднено или дорого. Примерами квазинатурных моделей могут служить вычислительные полигоны, на которых отрабатывается программное обеспечение различных систем, или реальные АСУ, исследуемые совместно с математическими моделями соответствующих производств [5

Масштабная модель – это система той же физической природы, что и оригинал, но отличающаяся от него масштабами. Методологической основой масштабного моделирования является теория подобия, которая предусматривает соблюдение геометрического подобия оригинала и модели и соответствующих масштабов для их параметров. При проектировании систем масштабные модели могут использоваться для анализа вариантов компоновочных решений по конструкции системы и ее элементов.

Аналоговыми моделями называются системы, имеющие физическую природу, отличающуюся от оригинала, но сходные с оригиналом процессы функционирования. Обязательным условием при этом является однозначное соответствие между параметрами изучаемого объекта и его модели, а также тождественность безразмерных математических описаний процессов, протекающих в них. Для создания аналоговой модели требуется наличие мате­матического описания изучаемой системы. Аналоговые модели используют при исследовании средств вычислительной техники на уровне логических элементов и элек­трических цепей, а также на системном уровне, когда функциони­рование системы описывается, например, дифференциальными или алгебраическими уравнениями.

Математические модели

Математическая модель представляет собой формализованное описание системы с помощью абстрактного языка, в частности, с помощью математических соотношений, отражающих процесс функционирования системы. Для составления модели можно использовать любые математические средства – алгебраическое, дифференциальное и интегральное исчисление, теорию множеств, теорию алгоритмов и т.д. По существу, вся математика создана для составления и исследования моделей объектов или процессов.

Цели моделирования и характерные черты оригинала определяют, в конечном счете, ряд других особенностей моделей и методы их исследования. Например, математические модели можно классифицировать на детерминированные и вероятностные (стохастические).

Первые устанавливают однозначное соответствие между параметрами и характеристиками модели, а вторые – между статистическими значениями этих величин. Выбор того или иного вида модели обусловлен степенью необходимости учета случайных факторов.

Среди математических моделей можно выделить по методу их исследования аналитические, численные и имитационные модели.

Аналитической моделью называется такое формализованное описание системы, которое позволяет получить решение уравнения в явном виде, используя известный математический аппарат.

Численная модель характеризуется зависимостью такого вида, который допускает только частные численные решения для конкретных начальных условий и количественных параметров модели.

Имитационная модель – это совокупность описания системы и внешних воздействий, алгоритмов функционирования системы или правил изменения состояния системы под влиянием внешних и внутренних возмущений. Эти алгоритмы и правила не дают возможности использовать имеющиеся математические методы аналитического и численного решения, но позволяют имитировать процесс функционирования системы и производить измерения интересующих характеристик.

Имитационные модели могут быть созданы для гораздо более широкого класса объектов и процессов, чем аналитические и численные модели. Поскольку для реализации имитационных моделей используются, как правило, вычислительные системы, средствами формализо­ванного описания имитационных моделей служат, зачастую, уни­версальные или специальные алгоритмические языки.

 

Выбор метода моделирования

Аналитические методы

Разработанная математическая модель функционирования системы может быть исследована различными методами – аналитическими или имитационными. С помощью аналитических методов анализа можно провести наиболее полное исследование модели. Для использования аналитических методов необходимо математическую модель преобразовать к виду явных аналитических зависимостей между характеристиками и параметрами системы и внешних воздействий. Однако это удается лишь для сравнительно простых систем. Применение аналитиче­ских методов для более сложных систем связано с большей, по сравнению с другими методами, степенью упрощения реальности и абстрагирования. Поэтому аналитические методы исследования используются обычно для первоначальной грубой оценки характеристик всей системы или отдельных ее подсистем, а также на ранних стадиях проектирования систем, когда недостаточно информации для построения более точной модели.

Имитационные методы

Имитационное моделирование является наиболее универсальным методом исследования систем и количественной оценки характеристик их функционирования. При имитационном моделировании динамические процессы системы-оригинала подменяются процессами, имитируемыми в абстрактной модели, но с соблюдением таких же соотношений длительностей и временных последовательностей отдельных операций. Поэтому метод имитационного моделирования мог бы называться алгоритмическим или операционным. В процессе имитации, как при эксперименте с оригиналом, фиксируют определенные события и состояния или измеряют выходные воздействия, по которым вычисляют характеристики качества функционирования системы. Имитационное моделирование позволяет рассматривать процессы, происходящие в системе, практически на любом уровне детализации. Используя алгоритмические возможности ПК, в имитационной модели можно реализовать любой алгоритм управления или функционирования системы.

Численные методы

Численное моделирование допускает только частные численные решения для конкретных начальных условий и количественных параметров модели.

Модели, которые допускают исследование аналитическими методами, также могут анализироваться имитационными методами. Все это является причиной того, что имитационные методы моделирования становятся основ­ными методами исследования сложных систем.

Методы имитационного моделирования различаются в зависимости от класса исследуемых систем, способа продвижения модельного времени и вида количественных переменных параметров системы и внешних воздействий.

В первую очередь можно разделить методы имитационного моделирования дискретных и непрерывных систем. Если все элементы системы имеют конечное множество состояний, и переход из одного состояния в другое осуществляется мгновенно, то такая система относится к системам с дискретным изменением состояний, или дискретным системам. Если переменные всех элементов системы изменяются постепенно и могут принимать бесконечное множество значений, то такая система называется системой с непрерывным изменением состояний, или непрерывной системой. Системы, у которых имеются переменные того и другого типа, считаются дискретно-непрерывными.

Особое значение имеет стационарность или нестационарность случайных, независимых переменных системы и внешних воздей­ствий. При нестационарном характере переменных, в первую очередь внешних воздействий, что часто наблюдается на прак­тике, должны быть использованы специальные методы моделиро­вания, в частности, метод повторных экспериментов.

Еще одним классификационным параметром следует считать схему формализации, принятую при создании математической модели. Здесь, прежде всего, необходимо разделить методы, ориентированные на алгоритмический (программный) или структурный (агрегатный) подход. В первом случае процессы управляют элементами (ресурсами) системы, а во втором – элементы управляют процессами, определяют порядок функционирования системы.

Введение. Понятие моделирования. Способы представления моделей

Оглавление



Поделиться:


Последнее изменение этой страницы: 2017-02-08; просмотров: 275; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.224.64.248 (0.022 с.)