Структура общего решения неоднородной линейной системы. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Структура общего решения неоднородной линейной системы.



 

Рассмотрим неоднородную линейную систему (2.2):

.

Докажем следующие свойства ее решений:

Свойство 1. Сумма любого решения системы (2.2) и любого решения соответствующей однородной системы (4.2) является решением системы (2.2).

 

Доказательство.

Пусть с1, с2,…,сn – решение системы (2.2), а d1, d2,…,dn – решение системы (4.2) с теми же коэффициентами при неизвестных. Подставим в систему (2.2) xi=ci+di:

.

После перегруппировки слагаемых получим:

.

Но Следовательно, xi=ci+di является решением системы (2.2).

 

Свойство 2. Разность любых двух решений неоднородной системы (2.2) является решением соответствующей однородной системы (4.2).

 

Доказательство.

Пусть и - решения системы (2.2). Тогда

Утверждение доказано.

 

Следствие. Общее решение неоднородной системы (2.2) представляет собой сумму общего решения соответствующей однородной системы (4.2) и частного решения системы (2.2).

 

Пример.

Общее решение системы можно записать в виде:

, где - частное решение данной системы.

это множество элементов, называемых векторами, над которыми определённым образом определены операции сложения и умножения на число. В любом линейном пространстве можно выделить особую систему векторов, называемых 00007081%22базисом"базисом линейного пространства. Количество векторов в базисе равно размерности пространства. Любой вектор из пространства можно представить, как линейную комбинацию базисных векторов

Правило треугольника. Для сложения двух векторов и по правилу 0210510300180080треугольника оба эти вектора переносятся параллельно самим себе так, чтобы начало одного из них совпадало с концом другого. Тогда вектор суммы задаётся третьей стороной образовавшегося треугольника, причём его начало совпадает с началом первого вектора, а конец с концом второго вектора.

Правило параллелограмма. Для сложения двух векторов и по правилу 09001000005000310000параллелограмма оба эти вектора переносятся параллельно самим себе так, чтобы их начала совпадали. Тогда вектор суммы задаётся диагональю построенного на них параллелограмма, исходящей из их общего начала.

А модуль (длину) вектора суммы определяют по 0205010500000108011002теореме косинусов где — угол между векторами, когда начало одного совпадает с концом другого. Так же используется формула теперь — угол между векторами выходящими из одной точки.

Сложение двух скользящих векторов определено лишь в случае, когда прямые, на которых они расположены, пересекаются. Тогда каждый из векторов переносится вдоль своей прямой в точку пересечения этих прямых, после чего сложение осуществляется по правилу параллелограмма.

Сложение двух фиксированных векторов определено лишь в случае, когда они имеют общее начало. Их сложение в этом случае осуществляется по правилу параллелограмма.

Сложение коллинеарных скользящих векторов

Если скользящие векторы параллельны, то при их сложении главная трудность состоит в определении прямой, на которой будет расположена их сумма. (Величину и направление вектора суммы было бы естественно определить точно так же, как и в случае сложения свободных векторов.) В 02050105108105100018005100008000механике при изучении 01100108000статики для решения вопроса о сложении параллельных сил, которые, как известно, задаются скользящими векторами, вводится дополнительная гипотеза: к системе векторов можно добавить два вектора, равных по величине, противоположных по направлению и расположенных на одной прямой, пересекающей прямые, на которых расположены данные вектора. Пусть, например, надо сложить скользящие векторы и , расположенные на параллельных прямых. Добавим к ним векторы и , расположенные на одной прямой. Прямые, на которых расположены векторы и , и пересекаются. Поэтому определены векторы

Прямые, на которых расположены векторы и , пересекаются всегда, за исключением случая, когда векторы и равны по величине и противоположны по направлению, в котором говорят, что векторы и образуют пару (векторов).

Таким образом, под суммой векторов и можно понимать сумму векторов и , и эта сумма векторов определена корректно во всех случаях, когда векторы и не образуют пару.

Законы умножения вектора на число.

I. 1 · a = a,0 · a = 0, m · 0 = 0, ( 1) · a = – a.

II. m a = a m, | m a | = | m | · | a |.

III. m (n a) = (m n) a. (С о ч е т а т е л ь н ы й

закон умножения на число).

IV. (m + n) a = m a + n a, (Р а с п р е д е л и т е л ь н ы й

m (a + b)= m a + m b. закон умножения на число).

Скалярное произведение векторов. __ __

Угол между ненулевыми векторами AB и CD – это угол, образованный векторами при их параллельном переносе до совмещения точек A и C. Скалярным произведением векторов a и b называется число, равное произведению их длин на косинус угла между ними:

 

Если один из векторов нулевой, то их скалярное произведение в соответствии с определением равно нулю:

(a, 0) = (0, b) = 0.

Если оба вектора ненулевые, то косинус угла между ними вычисляется по формуле:

Скалярное произведение (a, a), равное | a | 2, называется скалярным квадратом. Длина вектора a и его скалярный квадрат связаны соотношением:

 

Скалярное произведение двух векторов:

- положительно, если угол между векторами острый;

- отрицательно, если угол между векторами тупой.

Скалярное произведение двух ненулевых векторов равно нулю тогда и только тогда, когда угол между ними прямой, т.е. когда эти векторы перпендикулярны (ортогональны):

 

 

Свойства скалярного произведения. Для любых векторов a, b, c и любого числа m справедливы следующие соотношения:

I. (a, b) = (b, a). (П е р е м е с т и т е л ь н ы й закон)

II. (m a, b) = m (a, b).

III. (a + b, c) = (a, c) + (b, c). (Р а с п р е д е л и т е л ь н ы й закон

Скаля́рное произведе́ние — операция над двумя векторами, результатом которой является скаляр (число), не зависящее от системы координат и характеризующее длины векторов-сомножителей и угол между ними. Эта операция обычно рассматривается как коммутативная и линейная по каждому сомножителю.

Базис пространства

Ба́зис (др.-греч. βασις, основа) — множество таких векторов в векторном пространстве, что любой вектор этого пространства может быть единственным образом представлен в виде линейной комбинации векторов из этого множества - базисных векторов.

Базисом линейного пространства называется такая конечная упорядоченная линейно независимая система векторов, что любой вектор пространства является линейной комбинацией этих векторов.

В отличие от трехмерного пространства векторов, в некоторых линейных пространствах базис не существует.

Теорема 18.1 В линейном пространстве любые два базиса содержат одинаковое число векторов. Определение 18.3 Линейное пространство, в котором существует базис, состоящий из векторов, называется -мерным линейным или векторным пространством. Число называется размерностью пространства и обозначается. Линейное пространство, в котором не существует базис, называется бесконечномерным.

Примером бесконечномерного пространства является пространство всех многочленов с вещественными коэффициентами

20) Преобразования координат при замене базиса

Пусть системы векторов e = {e1,..., en} и f = {f1,..., fn} — два базиса n-мерного линейного пространства Ln.

Обозначим xe = (x1,x2,..., xn) и xf = (x'1,x'2,..., x'n) — координаты вектора x ∈ Ln соответственно в базисах e и f.

Справедливо следующее xe= Ce→f·xf:

Здесь Ce→f — матрица перехода от базиса e к базису f, это матрица, столбцами которой являются координаты базисных векторов f1,..., fn в базисе e1,..., en:

f1 = с11· e2 + с21· e1 +... + сn1· en, f2 = с12· e1 + с22· e2 +... + сn2· en,..., fn = с1n· e2 +... + сnn· en.

Формулу преобразования координат вектора при изменении базиса принято записывать в виде

 

xf= (Ce→f)− 1·xe



Поделиться:


Последнее изменение этой страницы: 2017-02-06; просмотров: 169; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.139.79.59 (0.021 с.)