Виробничий шум та його основні характеристики 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Виробничий шум та його основні характеристики



У зв’язку з технічним прогресом відбувається різке посилення акустичного фону в будь-якій сфері перебування людини, тому боротьба з шумом має нині соціальне значення.

Звук або шум виникає при механічних коливаннях у твердому, газоподібному й рідкому середовищах.

За фізичною сутністю звук - це хвилеподібне розповсюдження механічних коливальних рухів часток пружного середовища.

За гігієнічною сутністю шум – це сукупність звуків, що негативно впливають на організм людини, заважуючи їй у роботі та відпочинку.

Основними параметрами, що характеризують звук є амплітуда коливання, швидкість розповсюдження та довжини хвилі.

Звукові коливання в будь-якому середовищі виникають тоді, коли під дією збуджуючих сил порушується його стаціонарний стан. Частки середовища починають коливатися відносно положення рівноваги, створюючи хвилі звукових пружних деформацій унаслідок ритмічного стиснення й розрідження часток звукового поля. Кожна точка звукового поля характеризується звуковим тиском(Р, Па). У фазі стиснення звуковий тиск позитивний, у фазі розрідження – від’ємний.

Звуковий тиск – це різниця між миттєвим значенням повного тиску й середнім значенням тиску, що спостерігається при відсутності звукового поля.

При розповсюдженні звукових хвиль відбувається перенесення енергії, яка називається інтенсивністю звуку.

Інтенсивність звуку – це енергія, яка переноситься в просторі звуковою хвилею через поверхню 1м перпендикулярно напрямку поширення звукової хвилі за 1 секунду (Вт/м ).

Швидкість поширення звукових хвиль залежить від пружних властивостей середовища (у повітрі 334 м/с).

Частотний склад шуму характеризує його спектр. Характер спектру може бути низькочастотним (до 400 Гц), середньочастотним (400-1000 Гц), високочастотним (понад 1000 Гц).

За величиною інтервалів між звуками, з яких складається шум, розрізняють дискретний і суцільний шуми.

За характером змін, що відбуваються в часі, шуми бувають стабільними й перервними. Стабільний шум у часі змінюється несуттєво, а перервний має періодично швидке зростання енергії і її спад через певні паузи.

Звук за своєю сутністю є коливальним рухом. Однак, не кожен звук людина сприймає як звуковий подразник. Слуховий апарат людини реагує тільки на ті коливальні рухи, які відбуваються з певною частотою. Людина найкраще чує звуки в діапазоні від 800 до 4000 Гц.

Мінімальна величина звукової енергії, що сприймається як звук називається слуховим порогом (порогом чутливості) і становить 10 Вт/м (). Мінімальний тиск, який людина сприймає як звук, на частоті 1000 Гц становить Па (). Верхньою межею, за якою звук викликає вже больові відчуття відповідає силі звуку 10 Вт/м , а за звуковим тиском - Па.

Отже, інтенсивність звуку на порозі больового відчуття в 10 разів перевищує силу звуку на порозі чутливості, а за звуковим тиском – до 10 разів. Різниця між больовим порогом і порогом чутливості дуже велика, тому незручно в акустичних розрахунках використовувати абсолютні величини.

Для характеристики акустичного феномену англійський вчений О.Г. Белл (1847-1922р) ввів спеціальну шкалу акустичних одиниць як найбільш об’єктивну і таку, що відповідає фізіологічній сутності сприйняття. За цією шкалою кожний наступний рівень звукової енергії перевищує попередній у 10 разів. Наприклад, якщо сила одного звука більша від іншого у 10, 100, у 1000 разів, то за логарифмічною шкалою вона відповідає збільшенню на 1,2,3 одиниці (lg10=1 і т. ін). Логарифмічна одиниця, що відображає десятикратне збільшення інтенсивності звука порівняно з іншим в акустиці називається белом.

Вухо людини здатне сприймати зміну сили звуку в 10 разів меншу за бел, тому в практиці застосовують одиницю в 10 разів меншу, яка дістала назву децибел (дБ).

Отже, бел і децибел – це умовні одиниці, які показують наскільки даний звук (І) у логарифмічному масштабі перевищує умовний поріг чутливості (). Величини, що вимірюються таким чином, називаються рівнями інтенсивності шуму () або рівнями звукового тиску ():

Дія шуму на організм людини

Найкраще вивчено дію шуму на слуховий апарат людини, доведено, що несприятливе акустичне середовище може призвести до розвитку слухової патології – професійної глухоти.

Шум може впливати на слух людини; викликаючи миттєву глухоту або пошкоджуючи орган слуху призводячи до акустичної травми.

Тривала дія шуму може різко знижувати чутливість слуху до звуків на окремих частотах, після чого слух може відновлюватися майже повністю внаслідок прояву адаптаційної захисної пристосувальної реакції слухового апарату.

Адаптацією до шуму вважається тимчасове зниження гостроти слуху не більше як на 15дБ з відновленням його протягом кількох хвилин після припинення дії шуму.

Найшкідливішим для слуху є шум великої інтенсивності з довготривалим періодом безперервної дії.

Зміна слухової функції може мати короткочасну й стійку втрату гостроти слуху. Короткочасне зниження гостроти слуху вказує на адаптаційно-пристосувальну реакцію органу слуху на дію шуму.

Інтенсивний шум при щоденній дії може призвести до вираженого професійного захворювання – туговухості (неврит слухового нерва). Ознакою туговухості є втрата слуху в першу чергу на ділянці високих частот, а пізніше – і на найбільш низьких частотах.

Розвиток професійної туговухості залежить від виробничого стажу в умовах шуму, характеру шуму, тривалості дії протягом дня, інтенсивності та спектрального стану. Імпульсивний шум діє на організм більш несприятливо ніж суцільний при аналогічній сумарній потужності.

Початкова стадія професійної туговухості настає у робітників, що працюють в умовах шуму біля 5 років, а пошкодження на всіх частотах понад 10 років.

Крім наведеного дія шуму спричиняє ушкодження багатьох органів і систем організму, бо є вираженим загально біологічним подразником нервової і серцево-судинної системи в яких зміни настають раніше ніж розвивається туговухість.

Гігієністами (Т.А. Орлова, С.П Алексєєв і ін.) встановлено, що для робітників шумових професій характерним є пошкодження функціонального стану серцево-судинної системи (брадикардія, гіпертонія, зміна на ЕКГ та ін.)

Шумовий чинник спричиняє зміни секреторної функції шлунково-кишкового тракту та порушення обмінних процесів (основного, вітамінного, вуглеводного, білкового, жирового та сольового).

Людина сприймає звукові коливання не лише органом слуху, а і через кістки черепа (так звана кісткова провідність).

У працюючих в несприятливому акустичному середовищі виникають такі симптоми, як: роздратування, послаблення пам’яті, зміна чутливості шкіри, уповільнення швидкості психічних реакцій, розлад сну, зменшення гостроти зору, поява головного болю, запаморочення, зміна ритму дихання, пригнічений стан.

На фоні шуму настає передчасна втома, уповільнюється темп праці її продуктивність та якість, знижується увага та психічні реакції, що може призвести до виробничого травматизму.

Під дією шуму може настати загальне захворювання, яке отримало назву “шумова хвороба”. Однак це професійним захворюванням не визнається, хоч є всі підстави вважати його професійним для працівників шумових професій.

Методи та засоби захисту

Відносно джерела звуку, боротьба з шумом поділяється на:

  • засоби, що знижують шум у джерелі його виникнення;
  • засоби, що зменшують шум на шляху його поширення.

До заходів зменшення шуму в джерелі його виникнення відноситься поліпшена конструкція машин, застосування матеріалів, що не створюють сильних звуків, забезпечення мінімальних допусків, зміна прямозубих шестерень шевронними і т. ін.

До заходів зменшення шуму на шляхах його поширення відносяться такі методи як:

  • акустичні;
  • архітектурно-планувальні;
  • організаційно-технічні.

До акустичного методу відноситься зменшення шуму шляхом звукопоглинання та звукоізоляції.

Звукопоглинання базується на перетворенні енергії звукових коливань часток повітря на теплоту за рахунок втрат на тертя в порах звукопоглинаючого матеріалу.

У виробничому середовищі рівень шуму значно зростає внаслідок його відбиття від огороджуючи будівельних конструкцій та обладнання. Для зменшення відбитого шуму застосовують акустичну обробку приміщень шляхом облицювання його поверхонь звукопоглинаючими матеріалами.

Ефективність звукопоголинаючих матеріалів залежить від коефіцієнта поглинання, якщо він дорівнює нулю, тоді вся енергія відбивається, якщо одиниці-вся енергія поглинається.

Звукопоглинаючими вважають матеріали, що мають коефіцієнт поглинання більше 0,2. Коефіцієнт звукопоглинання залежить від частоти звукових хвиль, кута їх падіння, товщини і типу матеріалів, ефективність яких визначається акустичними розрахунками.

Звукоізоляція, як метод зниження шуму на шляху його поширення, базується на відбитті звукової хвилі, що падає на екран, перегородку, огородження та ін. Ефективним звукоізоляційним матеріалом є метал, бетон, дерево та інші щільні матеріали.

Екранування використовують тоді коли інші методи малоефективні. Екран створює звукову тінь і є перешкодою на шляху його поширення. Екрани виготовляють зі стальних листів (1-3мм), які з боку джерела шуму вкривають звукопоглинаючим матеріалом. Акустична властивість екранів залежить від його форми, розмірів, розміщення відносно джерела шуму й робочого місця.

Для боротьби з аеродинамічними шумами застосовують глушники шуму: абсорбційні, реактивні і комбіновані.

Архітектурно-планувальні методи включають в себе акустичне планування будівель і споруд, організацію робочих місць, розміщення обладнання, створення шумозахисту та раціональних зон руху транспортних засобів.

На території промислової та житлової забудови зменшення шуму досягається шляхом створення зелених насаджень з дерев та чагарників.

Організаційно-технічні заходи боротьби з шумом включають впровадження малошумного технологічного обладнання, дистанційне управління та використання раціональних режимів праці та відпочинку і т. ін.

Крім наведених колективних методів боротьби з шумом використовують засоби індивідуального захисту (ЗІЗ). Сюди належать протишумові навушники, що закривають слухову раковину ззовні і протишумові вставки, що закривають слуховий прохід. До ЗІЗ належать також протишумові шоломи, що закривають голову, і маски, які використовуються разом з навушниками.

До профілактичних заходів щодо попередження професійної слухової патології належить скорочення часу контакту людини з шумом, влаштування короткочасних перерв для відновлення слухової функції, суміщення професій, попередні та періодичні медичні огляди. Термін проведення яких залежить від рівня шуму (від 1 разу на 3 роки до щорічного).

Ультразвук

Для технологічних потреб в промисловості використовується ультразвук низьких частот – від 18 до 30 кГц і високої потужності – до 6-7 Вт/см .

Низькочастотний ультразвук частково утворюється при аеродинамічних процесах і є супутником відчутних шумів (робота реактивних двигунів, газових турбін та ін.).

Ультразвук – це механічне коливання пружного середовища, що має однакову зі звуком фізичну природу.

Ультразвук характеризується тиском, інтенсивністю і частотою коливань. Він відрізняється від звукових коливань так, що не сприймається органами слуху людини.

Ультразвук буває низькочастотним, що добре поширюється у повітрі та контактним шляхом і високочастотним, що передається контактним шляхом.

Ультразвук при поширенні його у різних середовищах поглинається тим сильніше, чим вища його частота. Вода, метал та інші пружні середовища слабо поглинають ультразвук, а відтак він поширюється на велику відстань, практично не втрачаючи енергії.
Поглинання ультразвуку супроводжується нагріванням середовища.

Специфічною особливістю ультразвуку є те, що він поширюється спрямованими пучками. Завдяки високій частоті та малій довжині хвиль ультразвук створює високий тиск, що обумовлює його використання у багатьох промислових процесах (механічна обробка твердих крихких матеріалів, знежирювання, очищення деталей, зварювання, паяння, лудіння, прискорення хімічних реакцій і т. ін).

Унаслідок тривалої роботи на ультразвукових установках працівники підпадають під негативну дію ультразвуку через повітря або безпосередньо при контакті з рідкими або твердими тілами, що поширюють ультрахвилі.

Більш небезпечним для організму є контактна дія ультразвукового випромінювання при роботі з ручними інструментами під час паяння, лудіння або очищення деталей.

При виконанні вказаних робіт, коли ультразвук перевищує гранично допустимі рівні, можуть виникати функціональні зміни в центральній, периферійній нервовій та судинній системах організму у місцях контакту (вегетативні поліневрити, м’язова слабкість пальців рук та передпліччя).

Низькочастотні ультразвукові хвилі негативно впливають на слуховий та вестибулярний апарати, больову чутливість і процеси терморегуляції, про що свідчать численні дослідження глухонімих.

Основний документ, що регламентує безпеку при роботі з ультразвуком є ДСН 3.3.6.037-99 “ Ультразвук. Загальні вимоги безпеки ”.

При контакті рук та інших частин тіла людини з робочими органами, що генерують ультразвук, рівень його не повинен перевищувати 110 дБ. Тривалість часу дії ультразвуку має обумовлюватися відповідним розрахунком.

З метою профілактики шкідливого впливу ультразвуку, використовують автоматичне малопотужне ультразвукове обладнання та установки з дистанційним управлінням. Щоб уникнути розповсюдження ультразвуку, установки обладнують звукоізолюючими кожухами та екранами, покритими гумою, протишумовою мастикою, та ін.

Ефективним методом профілактики є розміщення обладнання у звукоізольованих приміщеннях або застосування спеціального інструменту та застосування ЗІЗ (антифони з ультратонкою скловатою, захисні рукавиці і т. ін). До роботи допускаються особи, що досягли 18 років.

Інфразвук

Інфразвук утворюється при роботі компресорів, турбін, дизельних двигунів, промислових вентиляторів та інших великогабаритних машин, а також при турбулентних процесах, що виникають під час руху великих газових або рідинних потоків (аеродинамічне походження). При роботі компресорів потужним джерелом інфразвуку є система забору повітря.

Багато природних явищ таких як землетруси, виверження вулканів, морські хвилі, шторми та цунамі – генерують також інфразвукові хвилі.

Інфразвук за фізичними властивостями має однакову природу зі звуком. Він мало поглинається повітрям, а відтак може поширюватися на великі відстані.

Параметрами інфразвуку є інфразвуковий тиск, інтенсивність та частота коливань до 20 Гц.

Дослідження свідчать про високу чутливість організму людини до рівня коливань з максимумом енергії в зоні інфразвукових частот.

Тривалі низькочастотні коливання призводять до зниження працездатності, нервово-вегетативних розладів, порушення сну та психіки. Під час роботи реактивних двигунів виникає струс грудної клітки і черевної порожнини, розвиваються часті запаморочення та нудота, з’являються відчуття безпричинного страху, підвищується артеріальний тиск, виникають випадки непритомності.

Низькочастотні інфразвукові коливання збільшують загальну витрату енергії, у працюючих виникають вестибулярні порушення, знижується гострота слуху, зору і т. ін.

Характер негативних змін в організмі залежить від діапазону частот, рівня інфразвукового тиску і тривалості його впливу.

Межа тривалості людини при короткочасній дії інфразвукового тиску становить до 150дБ, а понад 150дБ є дуже небезпечною.

Частоти інфразвукових коливань в межах від 2 до 15 Гц викликають в організмі резонансні явища. Частота 8 Гц може збігатися з альфа-ритмом, біоритмів мозку людини.

Інфразвук є професійний шкідливий чинник. Може впливати на весь організм і чинити специфічну дію на органи слуху бо сприймається не тільки органом слуху, а й поверхнею тіла людини.

Боротьба з негативною дією інфразвуку має вестися у тих же напрямках, що і боротьба із шумом, шляхом усунення причин його виникнення:

  • послаблення інфразвуку в джерелі його утворення;
  • послаблення та ізоляція інфразвуку встановленням глушників, екранів і т. ін.;
  • використання ЗІЗ та методів медичної профілактики (професійний добір, періодичні медичні огляди).

Боротьбу з інфразвуком, враховуючи її надзвичайну складність, потрібно починати на стадії проектування та конструювання машин і агрегатів чи розробки проектного завдання на будівництво підприємств.

Іонізуюче випромінювання

Нині широко використовуються так звані мічені атоми для контролювання дефектів у будівельних конструкціях, для дефектоскопії трубопроводів, технологічного обладнання, якості зварних швів і т. ін.

Широке використання енергії поділу та синтезу ядер стимулювало розвиток радіаційної безпеки, яка займається питанням створення задовільних умов праці з джерелами іонізуючого випромінювання.

Іонізуючим випромінюванням (радіацією) називається будь-яке випромінювання, що прямо чи побічно викликає іонізацію середовища.

Техногенними джерелами іонізуючого випромінювання є підприємства ядерно-паливного циклу, прискорювачі заряджених часток, рентгенівські установки та інше.

У природі існують стійкі і нестійкі хімічні елементи. Нестійкі елементи розпадаються на ядра атомів інших елементів.

Процес спонтанного перетворення ядер атомів нестійких елементів називається радіоактивним розпадом. Цей самовільний розпад неможливо прискорити, сповільнити або зупинити. Розпад ядер супроводжується випромінюванням компонентами якого є альфа- (), бета- (), гамма- () випромінювання та нейтрони.

Основною властивістю іонізуючого випромінювання є його всепроникаюча здатність.

Під час роботи з радіоактивними елементами значення має не їх маса, а кількість ядер, що розпадаються за секунду. Час, протягом якого кількість ядер внаслідок самочинних перетворень зменшується вдвічі, називається періодом напіврозпаду. Період напіврозпаду для різних ізотопів коливається від долі секунди до багатьох мільярдів років.

При випромінюванні радіоактивних речовин середовище (об’єкт) поглинає відповідну кількість енергії, тому зміни, що будуть в ньому відбуватися, залежать від кількості поглинутої їм енергії та маси. Позасистемна одиниця поглинутої дози – рад.

На організм людини різні види іонізуючого випромінювання навіть при однаковій поглинутій дозі будуть чинити різну біологічну дію. Тому для оцінки ступеня опромінення людини необхідно знати не лише поглинуту дозу, а й вид випромінювання.

Для оцінки біологічної дії радіації на організм людини вводиться поняття еквівалентної дози, що визначається як добуток поглинутої дози на коефіцієнт якості даного випромінювання. Одиницею еквівалентної дози є бер (біологічний еквівалент рада).

Одиницею експозиційної дози, яку використовують для кількісної оцінки іонізуючої дії є рентген (Р).

Дозу в 1Р створює джерело випромінювання масою 1кг за 1годину на відстані 1м.

Організм людини не може відчути навіть згубної дози переопромінення, без спеціальних приладів не може дізнатися про наявний рівень радіації.

Іонізуюче випромінювання, проходячи через біологічні тканини, викликає їх іонізацію, призводить до утворення позитивних і негативних іонів, до складних функціональних і морфологічних змін. Молекули води, що входять до складу організму розпадаються утворюючи вільні атоми та радикали, які мають велику окислювальну здатність. Вільні радикали пошкоджують тканини і порушують нормальні біохімічні процеси у живій тканині.

Залежно від поглинутої дози ці зміни можуть бути зворотними і незворотними.

Ураження органів людини унаслідок дії різних видів іонізуючого випромінювання називається променевою хворобою. Існує гостра і хронічна форма променевої хвороби.

Надходження радіоактивних речовин в організм можливе при:

  • вдиханні забрудненого повітря;
  • через шлунково-кишковий тракт;
  • шкіряні покриви.

Певні радіоактивні речовини вибірково діють на організм, тому чутливість різних органів до дії опромінення неоднакова. У зв’язку з цим введено таке поняття як критичний орган.

Критичним органом називається орган або частина тіла людини опромінення якого завдає найбільшої шкоди здоров’ю.

Радіоактивні речовини виводяться з організму через шлунково-кишковий тракт, нирки, дихальні шляхи, шкіру, а також через молочні залози. Залежно від періоду піврозпаду деякі речовини швидко виводяться, інші - повільно, утворюючи так зване депо. Наприклад, радій і стронцій накопичуються у кістковій тканині, полоній - у печінці, селезінці, плутоній – у кістках, легенях і ін.

Вибіркова здатність дії радіоактивних речовин обумовлює в першу чергу, захворювання критичних органів.

Найчутливішими до радіації є клітини, що швидко ростуть, відносно стійкою є м’язова тканина. При опроміненні дозами, що значно перевищують допустимі, людина може миттєво загинути – так звана “ смерть під променем ”.

При роботі з радіоактивними речовинами найбільші дози, що впливають на організм, називаються гранично допустимими дозами (ГДД).

Річний рівень опромінення має бути таким, щоб при рівномірному накопиченні протягом 50 років не виникали зміни не лише у здоров’ї працюючого, а й у здоров’ї його нащадків.

Допустимі дози опромінення регламентуються у Нормах радіаційної безпеки України (НРБУ).

Згідно з цим документом визначено такі категорії осіб які зазнають опромінювання:

  • категорія А (особи, які працюють з іонізуючими джерелами);
  • категорія Б (населення, яке з причини розміщення робочих місць або проживання може зазнати дії джерел випромінювання);
  • категорія В (все інше населення країни).

За ступенем чутливості до іонізуючого випромінювання встановлено три групи критичних органів, опромінення яких спричиняє найбільшу шкоду для здоров'я людини:

  • - усе тіло, гонади, червоний кістковий мозок;
  • - щитовидна залоза, м’язи, жирова тканина, печінка, нирки, селезінка, шлунково-кишковий тракт, легені, кришталик ока та ті, що не належать до І або ІІІ груп;
  • - шкіра, кісткова тканина, кисті рук, передпліччя, стопи.

Захист працюючих від внутрішнього та зовнішнього опромінення забезпечується системою:

  • технічних;
  • санітарно-гігієнічних;
  • лікувально-профілактичних заходів.

Дози опромінення будуть тим меншими, чим більшою буде відстань до джерела радіації, меншим часом контактування і надійним екрануванням.

Заходи захисту працюючих можна поділити на 2 групи:

  • засоби біологічного захисту від проникаючої радіації;
  • заходи запобігання забруднення виробничого середовища, повітря, одягу та шкірного покриву людини.

Санітарно-гігієнічні вимоги передбачають такі заходи:

  • радіаційне планування та оздоровлення приміщень;
  • дистанційне управління й контролювання виробничого процесу;
  • облаштування ефективної припливно-витяжної вентиляції;
  • обладнання санпропускників із системою дозиметричного контролю;
  • забезпечення відповідних ЗІЗ;
  • відповідне зберігання і транспортування радіоактивних речовин та відходів.

Залежно від характеру роботи вдаються також і до організаційних заходів:



Поделиться:


Последнее изменение этой страницы: 2017-02-06; просмотров: 370; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.137.164.241 (0.055 с.)