Управление, автоматизация технологических процессов и теплотехнический контроль 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Управление, автоматизация технологических процессов и теплотехнический контроль



 

9.1. На тепловой электрической станции предусматривается автоматизированная система управления (АСУ) технологическими процессами, обеспечивающая выполнение функций контроля, сигнали­зации, вычисления, дистанционного управления, автоматического регулирования, автоматического дискретного управления и защиты технологических объектов управления, а также оперативную связь.

9.2. Объем контроля, сигнализации, автоматического регули­рования, технологических защит и оперативной связи принимается в соответствии с руководящими указаниями.

9.3. Объем автоматического дискретного управления определя­ется, главный образом, задачами автоматизации технологических процессов при пуске, глубоких изменениях нагрузки и останове блоков и агрегатов.

9.4. Организация постов управления принимается двух типов: для электростанций блочных и с поперечными связями.

9.5. Для блочных электростанций основными постами управле­ния являются:

- центральный щит (ЦЩУ);

- блочные щиты управления (БЩУ);

- щиты управления (ЩУ) вспомогательных цехов (топливно-транспортного, водоприготовления и очистки воды),а также общестанционных установок (компрессорной, электролизерной и др.).

9.6. С центрального щита управления производится управление элементами связи электростанции с энергосистемой, автотрансфор­маторами связи, резервными трансформаторами собственных нужд 3-10 кВ и резервными возбудителями (подробный объем управления указан в п.8.39 "Электротехнической части"), управление неблочной циркуля­ционной насосной и другими объектами, предусмотренными ПТЭ, а также аварийное отключение мазутных насосов.

На ЦЩУ предусматривается информация о работе блоков и сиг­нализация о неисправности не обслуживаемых постоянным персоналом участков электростанции.

9.7. Блочный щит управления служит для централизованного управления всем входящим в блок оборудованием: котлоагрегатом, турбоагрегатом, генератором, блочным трансформатором, трансформатором собственных нужд со всеми относящимися к ним вспомогательными устройствами и механизмами во время пуска блока, его нор­мальней эксплуатации, планового останова и аварийных ситуаций.

Щиты управления блоков располагаются совместно в одном общем изолированном помещении, между блоками на отметке основ­ного обслуживания. В отдельных случаях при технико-экономическом обосновании допускается установка в одном помещении щитов большего или меньшего числа блоков. Для блоков мощностью 500 МВт и более БЩУ может размещаться в изолированных помещениях вне глав­ного корпуса.

Блочный щит управления состоит из оперативной и неоперативной частей. В оперативной части располагаются панели и пульты с приборами и аппаратурой, обеспечивающими контроль основных пока­зателей работы блока и выполнение основных операции по управлению.

В видимой оператору неоперативной части располагаются панели, в отдельных случаях с активной пнемосхемой, оснащенные показывающими и самопишущими приборами, а в невидимой части панели с электронными регуляторами, приборами технологических защит, реле, устройствами логического управления первого уровня и вспомога­тельной аппаратурой различного назначения.

Приборы и аппаратура управления размещаются на панелях и пультах по принципу их технологической принадлежности. В оператив­ном контуре допускается выделение основных приборов и аппаратов управления в центральную часть щита.

Последовательность расположения панелей в пультов, а также установка приборов на них для всех блоков электростанции прини­маются идентичными.

9.8. Энергоблоки оснащаются приборами автоматического хим. контроля водного режима, устанавливаемыми в двух смежных помеще­ниях общей площадью до 100 м2 с организованными стоками и венти­ляцией - одно для устройств подготовки проб и другое для прибо­ров автоматического контроля. Устройства подготовки проб и приборы автоматического контроля двух блоков располагаются в общих помещениях между котельным и турбинным отделениями.

На БЩУ выводится сигнализация о нарушении водного режима блоха.

9.9. Для электростанций с поперечными связями основными постами управлений являются:

- главный щит управления (ГЩУ);

- групповые щиты управления (ГрЩУ);

- щиты управления (ЩУ) вспомогательных цехов (топливно-транс­портного, водоприготовления и очистки воды) и общестанционных установок (компрессорной, электролизерной и др.).

9.10. С главного щита управления производится управление генераторами и элементами главной схемы электрических соедине­ний, включая питающие элементы собственных нужд 3-10 кВ (объем управления указан в п.8.38 "Электротехнической части"), управ­ление циркуляционной насосной и другими объектами, предусмотрен­ными ПТЭ, а также аварийное отключение мазутных насосов. При наличии на ТЭЦ только ГрЩУ, управление циркуляционными насосами может выполняться с ГрЩУ.

На ГЩУ предусматривается информация о работе основных агрегатов и сигнализация о неисправности не обслуживаемых постоянным персоналом участком электростанции.

9.11. Для управления четырьмя агрегатами, как правило, сооружается один групповой щит. Групповые щиты управления кот­лами и турбинами располагаются в одном изолированном помещении по возможности центрально к обслуживаемый агрегатам. Из этого помещения, как правило, осуществляется также управление пита­тельными насосами, деаэраторами и РОУ.

9.12. Электростанции с поперечными связями оснащаются при­борами автоматического химконтроля водного режима, устанавливае­мыми в двух смежных помещениях с организованными стоками и вен­тиляцией - одно для устройств подготовки пробы, другое - для автоматических приборов химконтроля. Устройства подготовки про­бы и приборы химконтроля группы котлов и турбин располагаются в общих помещениях между котельным и турбогенераторным отделениями. На ГрЩУ выводится сигнал нарушения водного режима.

9.13. Для электростанций с агрегатами мощностью до 200 МВт включительно теплотехнический контроль осуществляется в основ­ном индивидуальными средствами.

Для электростанций общей мощностью 500 МВт и выше выполне­ние необходимых расчетов, включая сбор и обработку требуемых для расчетов данных, производится средствами вычислительной тех­ники, устанавливаемой для всей станции в целом.

Для электростанций с блоками мощностью 300 МВт и более ос­новной объем теплотехнического контроля, технологической сигна­лизации, необходимых вычислений и регистрации данных осуществля­ются с помощью информационно-вычислительного комплекса (ИВК). Дублирование измерений индивидуальными приборами применяется ограниченно только для наиболее ответственных технологических параметров.

9.14. На электростанциях с БЩУ, располагаемым в изолиро­ванных помещениях вне главного корпуса, средства вычислительной техники и устройства логического управления высок уровней раз­мещаются в тех же помещениях.

На электростанциях, БЩУ (ГрЩУ) которых располагаются в главном корпусе, средства вычислительной техники размещаются в спе­циальном помещении, выбираемом с учетом допустимых расстояний и допустимого для аппаратуры уровня вибрации и запыленности.

9.15. На БЩУ и ГрЩУ предусматривается необходимая свето-звуковая сигнализация с выделением вновь появившегося сигнала миганием.

9.16. Для блоков мощностью 300 МВт и более выполняется регистрация событий при срабатывании защит, и производится регистрация параметров в аварийных ситуациях.

9.17. Для агрегатов мощностью до 300 МВт включительно дистанционное управление выполняется индивидуальным, избирательным и в отдельных случаях групповым.

9.18. Для блоков мощностью 500 МВт и более в основном применяется функционально-групповое управление. Наиболее ответственные механизмы, охваченные функционально-групповым управлением, оснащаются дублированным индивидуальным или избирательным управлением с БЩУ.

Управление механизмами, не входящими в функциональные группы, может быть индивидуальным или избирательным.

9.19. Допускается применение для дистанционного управления аппаратуры пониженного напряжения (24-60В).

9.20. Управление общестанционным оборудованием, находящимся вне главного корпуса (топливоподача, мазутонасосная, пиковая котельная, химводоочистка, золоудаление, электролизерная, компрессорная и др.) и контроль работы этого оборудования осуществляется со щитов управления, расположенных в помещениях, где это оборудование установлено или непосредственно по месту соответствующих механизмов.

Во всех случаях, за исключением топливоподачи и химводоочистки, контроль и управление выполняются, исходя из отсутствия на этих участках постоянного дежурного обслуживающего персонала, вследствие чего при появлении неисправности в работе оборудования на центральный (главный) шит управления подается общий для каждого участка сигнал. Расшифровка причин сигнала осуществляется в помещении соответствующего участка.

9.21. В тракте топливоподачи автоматизируются управление механизмами и процесс загрузки бункеров топливом.

Дистанционное управление механизмами выполняется с центрального щита топливоподачи, располагаемого в изолированном помещении с допустимым для аппаратуры уровнем вибрации и запыленности.

9.22. В химводоочистке предусматривается автоматизация технологических процессов, производительности ХВО, режимов регенерации, восстановления фильтров и процесса нейтрализации сточных вод.

9.23. В мазутохозяйстве осуществляется автоматизация тех­нологического процесса. Дистанционное управление механизмами выполняется со щита мазутонасосной.

9.24. Помещения центрального (главного), блочного и груп­пового щитов управления, а также помещения для средств вычисли­тельной техники выполняются со звукоизоляцией и кондиционирова­нием воздуха. Из помещений щита предусматривается два выхода.

Перекрытие щитового помещения должно иметь гидроизоляцию.

Высота центральной части помещения (ЦЩУ, БЩУ, ЩУ и ГрЩУ) в которой располагается оперативный контур, принимается 4 м.

Интерьер щита выполняется по специальному проекту.

В случае установки реле или иной аппаратуры системы управ­ления вне БЩУ в обособленных изолированных помещениях - послед­ние выполняются вентилируемыми.

Вблизи помещения блочного щита управления предусматриваются помещения для дежурного персонала цеха ТАИ и санузел.

9.25. В инженерно-вспомогательном корпусе предусматривается помещение для измерительных лабораторий и ремонта приборов общей площадью:

- для ГРЭС мощностью 1200-2400 МВт и ТЭЦ мощностью 600-1200 КВт - порядка 400 м2;

- для ГРЭС мощностью 2400 тыс. кВт и более порядка 600 м2.

 

ГИДРОТЕХНИЧЕСКАЯ ЧАСТЬ

10.1. Системы охлаждения и водоснабжения

 

10.1.1. На тепловых электростанциях применяются следующие систе­­мы водо­снабжения: прямоточная, оборотная с естественными или искусственными водоемами-охладителями, градирнями или брызгальными установками и комбинированная.

Выбор системы охлаждения и источника водоснабжения произво­дится в соответствии с указаниями главы СНиП ''Электростанции тепловые" и обосновывается технико-экономическим расчетом.

10.1.2. Главный корпус электростанции следует располагать возможно ближе к берегу водоема, а также к открытому подводящему каналу.

Отметку конденсационного пола машзала электростанций следу­ет принимать на основании технико-экономического расчета с уче­том затрат на подачу охлаждающей воды, условий производства ра­бот и затрат по подземной части машзала, объемов планировочных работ, геологических и гидрогеологических условий.

С целью снижения напора циркуляционных насосов следует предусматривать максимальное использование сифона (разность отметок верхней точки конденсатора и минимального пьезометри­ческого уровня в сливной трубе до 8,5 м). Присоединение к слив­ным трубам конденсаторов других сбросов при этом не допускается.

10.1.3. При проектировании водохранилищ-охладителей следу­ет предусматривать расположение и конструкцию водозаборных и водовыпускных сооружений, трассировку каналов и струенаправляющих дамб с учетом гидрологических особенностей водоемов; стоко­вых, ветровых, плотностных и др. течений, а также возможности использования и создания вертикальной циркуляции охлаждаемой воды.

С целью снижения температуры, повышения качества забираемой воды и защиты рыбной молоди следует проверять целесообразность устройства глубинных водозаборов.

10.1.4. Класс гидротехнических сооружений надлежит прини­мать в соответствии со СНиП "Гидротехнические сооружения речные. Основные положения проектирования".

10.1.5. Расчетную обеспеченность среднемесячных расходов воды источников прямоточного водоснабжения и оборотного с водо­емами охладителями следует принимать 95%.

Расчетную обеспеченность среднесуточных расходов воды ис­точников подпитки систем оборотного водоснабжения с градирнями или брызгальными установками (бассейнами) следует принимать 95%.

Расчетную обеспеченность минимальных уровней воды в источ­никах водоснабжения следует принимать 97%.

10.1.6. Расчетные расходы охлаждающей воды при всех систе­мах охлаждения водоснабжения и параметры охладителей при оборот­ных системах принимаются на основании технико-экономического выбора оптимальной кратности охлаждения пара, выполненного при среднемесячных гидрологических и метеорологических факторах среднего года с учетом суточного графика электрических нагрузок и графика ремонта турбин. При этом для теплофикационных турбин типа Т и ПТ расчетный расход охлаждающей воды и параметры охладителей определяются по расходу пара в конденсаторы в летний период при условии обеспечения номинальной электрической мощности и покрытия летних нагрузок.

10.1.7. Условия работы электростанций при оборотных системах водоснабжения с водохранилищами-охладителями определяются по среднемесячным гидрологическим и метеорологическим факторам среднего года с учетом теплоаккумулирующей способности водохранилища, графиков нагрузок и ремонта турбин. Проверяется располагаемая мощность электростанции в летний период жаркого и среднего года обеспеченностью 10%, устанавливаются пределы и длительность ограничения мощности по максимальным суточным температурам охлаждающей воды.

10.1.8. При оборотной системе водоснабжения с градирнями для конденсационных электростанций следует, как правило, применять башенные градирни. При этом проверяется располагаемая мощность электростанции в летний период жаркого и среднего года обеспеченностью 10%, устанавливаются пределы и длительность ограничения мощности по максимальным часовым температурам.

Для ТЭЦ с резким колебанием расхода пара в конденсаторы турбин в зимнее время проверяются условия работы градирен или возможность использования открытых бассейнов и каналов для охлаждения циркуляционной воды в зимнее время.

10.1.9. Для обеспечения работы первых двух турбин типов Т и ТП по конденсационному режиму при временном отсутствии расчетных отборов пара необходимо предусматривать опережающее строительство охладителей циркуляционной воды.

10.1.10. На охладители масла и газа, а также на охлаждение подшипников может использоваться вода из циркуляционной системы и добавочная вода других источников с более низкой температурой.

10.1.11. При всех системах водоснабжения предусматриваются мероприятия для предотвращения механического, биологического и минерального загрязнений конденсаторов и других теплообменников, а также каналов, водоприемников и водоводов.

10.1.12. Число головных сооружений и подводящих каналов при­нимается в зависимости от устойчивости русла реки, ее шугоносности, количества насосов, схемы обогрева водозабора и способа борьбы с биологическими загрязнениями.

10.1.13. При заборе воды из рек или водоемов, имеющих рыбо-хозяйственное значение, следует предусматривать рыбозащитные устройства.

10.1.14. При прямоточных и оборотных с водохранилищами системах водоснабжения для предотвращения затруднений, вызываемых шугой и льдом, предусматривается в случае необходимости подвод теплой вода к водозаборный сооружениям.

10.1.15. При трубчатых водозаборах число водозаборных трубопроводов должно быть не менее двух.

10.1.16. Водоприемные сооружения при прямоточном и оборот­ном водоснабжении с водохранилищами-охладителями оборудуются грубыми решетками, решеткоочистными машинами и очистными вращаю­щимися сетками, помещения которых совмещаются с циркуляционными насосными станциями. Для водоприемников предусматриваются затво­ры в ремонтные заграждения.

При водоснабжении с насосными 1-го в 2-го подъемов и нали­чии длинных промежуточных открытых каналов допускается установка вращающихся сеток только у насосной станции 2-го подъема.

В оборотных системах водоснабжения с градирнями и закрыты­ми подводящими каналами, при необходимости допускается установка плоских водоочистных сеток в центральных насосных либо у гради­рен.

10.1.17. При проектировании блочных электростанций установку циркуляционных насосов, как правило, следует предусматривать в блочных насосных станциях.

На каждый корпус или поток конденсатора, как правило, устанавливается один насос, при этом число насосов на турбину должно быть не менее двух, а их суммарная подача должна быть равна расчетному расходу охлаждающей воды на блок.

При большой геодезической высоте подъема воды в оборотных системах с градирнями, расположенными на большом расстоянии от главного корпуса, проверяется целесообразность ступенчатой пода­чи воды.

При рельефе площадки, допускающем расположение подводящего канала на высоких отметках или при сооружении напорного бассейна может применяться самотечная подача воды. При этом допускается сооружение одной насосной станции.

10.1.18. При проектировании неблочных электростанций установку циркуляционных насосов, следует предусматривать в центральных насосных станциях или в главном корпусе.

Число циркуляционных насосов в центральных насосных станциях, следует принимать не менее четырех с суммарной подачей, равной расчетному расходу охлаждающей воды без резерва.

Установка резервного насоса предусматривается только при водоснабжении морской водой.

10.1.19. Мощность электродвигателей центробежных насосов выбирается с учетом самозапусков насосов при открытых задвижках, а осевых насосов с учетом возможности работы при всех режимах, отвечающих характеристикам насосов. В случае невозможности обеспечить все расчетные режимы работы насоса односкоростным двигателем применяются двухскоростные электродвигатели.

10.1.20. В насосных станциях добавочной воды устанавливаются, как правило, два рабочих насоса. Число резервных насосов определяется по СНиП "Водоснабжение. Наружные сети и сооружения".

При кооперировании насосных установок, работающих сезонно (насосные разбавления сбросных вод, брызгательных бассейнов и градирен предварительного охлаждения и т. п.) рекомендуется применять погружные (капсульные) электронасосы.

10.1.22. При заглубленных циркуляционных насосных станциях и насосных добавочной воды обратные клапаны с переключающими задвижками устанавливаются в камере переключений вне насосного помещения.

При блочных насосных станциях обратные клапаны, задвижки и перемычки на напорных линиях не устанавливаются.

10.1.23. Циркуляционные (блочные и центральные) насосные станции следует проектировать с надземным строением и подъемно-транспортным оборудованием.

Насосные станции добавочной и осветленной воды с горизон­тальными насосами и камеры переключения, как правило, срдует проектировать без надземного строения. Для монтажа и ремонта оборудования в таких насосных станциях следует предусматривать подъемно-транспортные средства.

10.1.24. В насосных станциях добавочной воды, совмещенных с водоприемниками, и в отдельно стоящих водоприемниках, оборудованных вращающимися водоочистными сетками, устанавливаются два насоса для подачи воды на очистку всех сеток.

В заглубленных насосных станциях устанавливаются два дренажных насоса - один рабочий, один резервный.

10.1.25. Насосные станции и водоприемники, предусматриваются без постоянного обслуживающего персонала.

Управление работой циркуляционных насосов принимается, как правило, дистанционным со щита, расположенного в главном корпусе.

Работа вращающихся сеток, промывных устройств и дренажных насосов автоматизируется.

10.1.26. В циркуляционных насосных станциях, в насосных станциях добавочной и осветленной воды предусматривается вентиляция и дежурное отопление.

10.1.27. Отводящие каналы в пределах пристанционного узла и вне площадки выполняются, как правило, открытыми в одну нитку. Для ТЭЦ допускается сооружение закрытых каналов. В случае применения закрытых отводящих водоводов узлы отключения и перепусков должны быть расположены с таким расчетом, чтобы отключение участка водовода требовало остановки не более чем одной турбины.

10.1.28. От каждой центральной насосной станции следует предусматривать, как правило, не менее двух напорных водоводов.

10.1.29. На отводящих каналах сооружаются, как правило общие для всех турбин водосливные устройства, обеспечивающие необходимую высоту сифона в конденсаторах.

10.1.30. Следует предусматривать возможность опорожнения напорных и самотечных водоводов. Опорожнение водоводов в дренажные приямки насосных станций не допускаются.

10.1.31. При проектировании трубопроводов на вечномерзлых, просадочных, обводненных, илистых грунтах, на заболоченных территориях и т. п. Следует, как правило, предусматривать наземную прокладку.

10.1.32. Трубопроводы добавочной воды, как правило, следует проектировать в одну нитку: про этом на площадке ТЭС следует предусматривать емкость запаса воды на период ликвидации аварии в системе подачи добавочной воды или подвод воды от резервного источника. Допускается проектировать два водовода добавочной воды при соответствующем обосновании.

10.1.33. Трубопроводы добавочной воды, как правило, следует проектировать из железобетонных, асбестоцементных труб или труб из полимерных материалов.

10.1.34. Глубина вновь проектируемых водохранилищ-охладителей при летних уровнях воды принимается не менее 3,5 м на 80% площади зоны циркуляции водохранилища. Предусматривается мероприятия по ликвидации мелководий, а также мероприятия, обеспечивающие необходимое качество охлаждающей воды, обоснованные гидрохимическими прогнозами, выполняемыми с учетом проектируемого теплового и гидрологического режима водоема,

10.1.35. При сооружения водохранилищ предусматривается под­готовка их ложа, свалка леса, кустарников и др. Состав и объем мероприятий определяются с учетом предъявляемых требований в каждом отдельном случае в соответствии с действующими нормами.

10.1.36. При оборотных системах водоснабжения с градирнями устанавливается не менее двух градирен. При комбинированных сис­темах водоснабжения допускается установка одной градирни.

10.1.37. Градирни с башнями из монолитного или сборного железобетона следует применять в районах с расчетной температу­рой холодной пятидневки минус 28°С и выше.

10.1.38. Деревянные элементы градирен следует антисептировать.

10.1.39. Бассейны градирен и брызгальных установок снабжа­ются устройствами для очистки бассейна.

Следует предусматривать сигнализацию максимальных и минимальных уровней воды в бассейнах.

Допускается транзитный пропуск воды через бассейны нескольких градирен и брызгальных установок с обеспечением возможности отключения любого бассейна.

10.1.40. Брызгальные устройства, предназначенные для периодической параллельной работы с водохранилищами-охладителями или предварительного охлаждения воды, сбрасываемой в водоем, рекомендуется выполнять безъемкостными и размещать их над по­верхностью водохранилищ или каналов.

10.1.41. При оборотных системах водоснабжения с градирня­ми или брызгальными бассейнами следует проверять целесообраз­ность использования вод продувки для подпитки котлов.

10.1.42. Для всех систем водоснабжения следует рассматри­вать возможность использования сбросного тепла циркуляционной воды для рыбоводства и сельского хозяйства.

10.2. Внешнее золошлакоудаление

 

10.2.1. Совместный внешний транспорт золы и шлака на отвал осуществляется гидравлическим способом с использованием багорных насосов, эрлифтов или сухогрузным транспортом.

Раздельное внешнее удаление и складирование золы и шлака применяется при технико-экономическом обосновании или при наличии соответствующих требований потребителей золы и шлака.

10.2.2. От каждой багерной насосной станции золошлакопроводы на отвал принимаются с одной резервной ниткой. Допускается устройство одного резервного золошлакопровода на две багерные насосные и рекомендуется общий резервный пульпопровод для шлака и золы при разности их диаметров не более 50 мм.

10.2.3. Сооружения золошлакоотвалов проектируются с учетом емкости золоотвала достаточной для работы станции в течение 5 лет полной мощностью. Высота первичных ограждающих дамб опреде­ляется расчетом с учетом проектируемого способа складирования золошлаков.

При гранулометрическом и химикоминералогическом составе золошлаков, позволяющем их использование для наращивания дамб, высота первичных ограждающих дамб определяется, исходя из воз­можности накапливания золошлакового материала для последующего наращивания дамб.

10.2.4. Устойчивость ограждающих дамб золоотвалов следует рассчитывать аналогично плотинам соответствующего класса с уче­том предельной высоты заполнения золошлакоотвала. Класс дамбы определяется по СНиП "Электростанции тепловые".

Дамбы наращивания, как правило, следует проектировать из золошлаков. С целью обеспечения прочности основания и накопления золошлакового материала для дамб наращивания следует предусматривать намыв пляжей из крупных фракций золошлаков рассредоточенным выпуском пульпы у дамб.

При гранулометрическом составе с преобладанием мелких частиц, для накопления крупного материала у дамб, следует применять классификацию золошлаков по фракциям.

10.2.5. В пределах золошлакоотвала золошлаководы следует предусматривать на гребне дамбы или на эстакаде вдоль дамб со стороны верхнего бьефа.

Для уменьшения диаметра золошлакопроводов рекомендуется применять сгустители, которые следует устанавливать в котельном отделении или вблизи ТЭС.

10.2.6. При абразивных золошлаках предусматриваются меры для увеличения срока службы золошлакопроводов.

10.2.7. Водный баланс системы ГЗУ следует проектировать нулевым. Подпитку оборотной системы ГЗУ (до нулевого водного баланса) следует предусматривать технологическими сточными водами ТЭС.

Сточные воды ТЭС, включая от гидроуборки, разрешается подавать в систему ГЗУ в тех случаях, когда это допустимо по водному балансу системы и химсоставу сточных вод.

Поверхностный сток с водосборной площади золошлакоотвала, как правило, перехватывается и отводится за пределы отвала, а при дефицитном водном балансе используется для подпитки системы.

Водоотводящие коллекторы следует проектировать вне территории, заполняемой золошлаками.

10.2.8. В проекте должен быть раздел по организации эксплуатации золошлакоотвалов с разработанными годовыми и сезонными схемами заполнения золоотвалов, а также выполнены расчеты намыва придамбовых пляжей для наращивания дамб из золошлаков или использования пляжей в качестве основания дамб.

10.2.9. Возможность и целесообразность аккумуляции в золоотвале технологических сточных вод электростанции в течение всего времени до ввода ее полной мощности должна проверяться технико-экономическим расчетом.

10.2.10. При опасности образования в коммуникациях осветленной воды отложений гидрата окиси кальция, должны предусматриваться бассейн или отсек золоотвала для выдерживания в нем осветленной воды в течение 250-300 часов, а при образовании отложений карбоната кальция - 100-150 часов.

10.2.11. При проектировании золошлакоотвалов, емкости которых создаются намывом золошлаков на дренированное основание, необходимо предусматривать опережающий рассредоточенный намыв золошлаков с целью создания в безморозный период емкости, достаточной для складирования золошлаков в зимний период. Для интенсификации намыва могут применяться гидроклассификаторы и сгустители пульпы.

10.2.12. Рассредоточенный намыв может проектироваться по однотрубной и двухтрубной схеме.

10.2.13. Диаметр выпусков пульпы для рассредоточенного намыва рекомендуется принимать равным трем поперечникам расчетного пуска шлака. Для уменьшения диаметра выпусков следует применять дробилки тонкого дробления шлака (±10 мм) или шлакоотборники.

10.2.14. В насосных станциях осветленной воды следует предусматривать два рабочих насоса и один резервный. Производительность насосной осветленной воды вместе с резервным насосом, следует принимать равной сумме производительности рабочих и резервных багерных насосов плюс отборов осветленной воды на нужды ТЭС.

Допускается применение плавучих насосов осветленной воды при соответствующем обосновании.

В проекте должна быть предусмотрена полная автоматизация насосной.

10.2.15. При опасности образования отложений в тракте осветленной воды следует предусматривать дополнительный ремонтный насос и один резервный.

10.2.16. Диаметр, способ прокладки и материал водовода осветленной воды следует проектировать с учетом химического состава и способа борьбы с отложениями солей. Водовод осветленной воды следует принимать, как правило, в одну нитку. При химическом составе осветленной воды приводящем к зарастанию водоводов интенсивностью свыше 5% живого сечения водовода в год, допускается укладка резервной нитки.

10.2.17. Необходимость защиты золошлакопроводов и водовода осветленной воды от замерзания при работе, а также в режиме их опорожнения определяется технологическим расчетом.

10.2.18. Опорожнение золошлаководов и системы канализации в водоемы не допускается. Для опорожнения золошлакопроводов по их трассе при неблагоприятном ее профиле предусматриваются простейшие емкости или используются бессточные понижения рельефа местности.

10.2.19. Для борьбы с пылением золошлакоотвалов следует предусматривать смачивание намытых поверхностей (золовых пляжей) путем рассредоточенного выпуска пульпы до всему фронту ограждаю­щих дамб или смачивание пляжей разбрызгиванием осветленной воды, либо закреплением их противоэрозийным составом.

При необходимости следует предусматривать защиту подземных и поверхностных вод от загрязнения сточными водами золошлакоотвалов.

10.2.20. При расположении золошлакоотвалов в пределах за­строенной территории следует предусматривать устройство сетчатых ограждений и освещения вокруг части или всей территории золошлакоотвала.

10.2.21. Дли обеспечения выдачи потребителям золошлаков из действующих отвалов следует предусматривать их секционирование и дренаж, а также средства борьбы с пылением золы, дороги по дамбам и съезды в секции. Следует рассматривать возможность перекачки шлаковой пульпы в дренированный отстойник на территории потребителя, с возвратом осветленной воды на электростанцию.

10.2.22. В проектах гидротехнических сооружений всех систем водоснабжения и гидрозолоудаления следует предусматривать установку контрольно-измерительных устройств с указанием периодичности замеров и предельно допустимых по условиям надежности работы сооружений значений контролируемых параметров.

10.3. Водопровод, канализация и противопожарные мероприятия

 

10.3.1. Проектирование сетей и сооружений водопровода пло­щадок и жилых поселков ТЭС производится в соответствии со СНиП.

10.3.2. Противопожарный водопровод на площадках ТЭС, как правило, объединяемый с производственным, надлежит проектировать высокого давления.

Давление в наружной сети противопожарного водопровода не должно превышать 1 МПа (10 кГс/см2).

10.3.3. Насосы производственно-противопожарного водоснабжения, как правило, надлежит размещать в блочных или центральных насосных станциях.

Насосы хозяйственно-питьевого водоснабжения следует размещать в производственных или служебно-административных помещениях.

10.3.4. Проектировании сетей и сооружений бытовой и дожде­вой канализаций производится в соответствии с нормами проектиро­вания (СНиП);

"Канализация, наружные сети и сооружения", "Внутренняя кана­лизация и водостоки зданий".

Проектирование сооружений канализации производственных сточных вод ТЭС производится в соответствии с "Руководством по проектированию обработки и очистки производственных сточных вод тепловых электростанций".

10.3.5. При проектировании стационарных и полустационарных систем и установок пенного, газового и водного пожаротушения следует руководствоваться: "Указаниями по проектированию противопожарных мероприятий, систем пожаротушения и обнаружения пожаров на энергетических объектах"; "Инструкцией по проектировании ус­тановок автоматического пожаротушения" и "Указаниями по проектированию установок пожаротушения в кабельных помещениях распы­ленной водой".

ТЕПЛОСНАБЖЕНИЕ

 

11.1. Проект теплофикационных электростанций разрабатывает­ся, как правило, одновременно с проектом тепловых сетей на ос­нове утвержденной схемы теплоснабжения города и промышленного района и, выполняется на расчетный срок, установленный схемой теплоснабжения.

11.2. Существующие и сооружаемые в городе или промышленном районе котельные, мощностью 100 Гкал/ч и более должны, как пра­вило, использоваться для совместной работы с ТЭЦ в качестве пи­ковых источников теплоснабжения.

11.3. Тепловые нагрузки горячего водоснабжения в балансах ТЭЦ учитываются:

- бытовые - по среднечасовому расходу за отопительный пе­риод;

- технологические - по среднечасовому расходу за смену с наибольшей тепловой нагрузкой.

11.4. Схема теплофикационных установок ТЭЦ должна быть сек­ционирована по сетевой воде.

Количество секций определяется числом турбоагрегатов и тепломагистралей.

11.5. При проектировании сетевых станционных трубопроводов следует предусматривать возможность локализации отдельных участков сетевых станционных трубопроводов и предотвращения затопления помещений и оборудования электростанций в случае их повреждения, а также создание условий для удобной, безопасной их эксплуатации и ремонта.

11.6. Наружная поверхность сетевых станционных трубопроводов должна иметь антикоррозионное покрытие.

11.7. Производительность основных подогревателей сетевой воды на ТЭЦ выбирается по номинальной величине тепловой мощности теплофикационных отборов.

Основные подогреватели сетевой воды на ТЭЦ устанавливаются индивидуально у каждой турбины без резерва и общая паровая магистраль 0,12 МПа (1,2 кг/см2) не предусматривается. При установке на ТЭЦ пиковых водогрейных котлов пиковые подогреватели сетевой воды, как правило, не устанавливаются.

В целях использования паровой мощности котлов и производственных отборов турбин типа ПТ и Р допускается установка резервных пиковых сетевых подогревателей суммарной теплопроизводительностью не более 25% от расчетной тепловой нагрузки ТЭЦ в горячей воде для целей отопления, вентиляции и горячего водоснабжения.

Подогрев сетевой воды в основных сетевых подогревателях выполняется преимущественно в двух ступенях.



Поделиться:


Последнее изменение этой страницы: 2017-02-05; просмотров: 204; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.17.79.59 (0.093 с.)