Интервалы прогноза по линейному уравнению регрессии 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Интервалы прогноза по линейному уравнению регрессии



Прогнозирование по уравнению регрессии представляет собой подстановку в уравнение регрессии соответственного значения х. Такой прогноз называется точечным. Он не является точным, поэтому дополняется расчетом стандартной ошибки ; получается интервальная оценка прогнозного значения :

(30)

Преобразуем уравнение регрессии:

ошибка зависит от ошибки и ошибки коэффициента регрессии b, т.е. .

Из теории выборки известно, что .

Используем в качестве оценки s2 остаточную дисперсию на одну степень свободы S2, получаем: .

Ошибка коэффициента регрессии из формулы (15):

Таким образом, при х=хk получаем:

(31)

Как видно из формулы, величина достигает минимума при и возрастает по мере удаления от в любом направлении.

Для нашего примера эта величина составит:

При , При хk= 4

Для прогнозируемого значения 95% - ные доверительные интервалы при заданном хk определены выражением:

, (32)

т.е. при хk =4 ±2,57-3,34 или ±8,58. При хк =4 прогнозное значение составит

уp =-5,79+36,84·4=141,57 - это точечный прогноз.

Прогноз линии регрессии лежит в интервале: 132,99 150,15.

Мы рассмотрели доверительные интервалы для среднего значения у при заданном х. Однако фактические значения у варьируются около среднего значения , они могут отклоняться на величину случайной ошибки e, дисперсия которой оценивается как остаточная дисперсия на одну степень свободы S2. Поэтому ошибка прогноза отдельного значения у должна включать не только стандартную ошибку но и случайную ошибку S. Таким образом, средняя ошибка прогноза индивидуального значения y составит:

(33)

Для примера:

Доверительный интервал прогноза индивидуальных значений у при хк =4 с верностью 0,95 составит:. 141,57 ±2,57·8,01, или 120,98 ≤ ур 162,16.

Пусть в примере с функцией издержек выдвигается предположение, что в предстоящем году в связи со стабилизацией экономики затраты на производство 8 тыс. ед. продукции не превысят 250 млн. руб. Означает ли это изменение найденной закономерности или затраты соответствуют регрессионной модели?

Точечный прогноз: = -5,79 + 36,84 • 8 = 288,93. Предполагаемое значение - 250. Средняя ошибка прогнозного индивидуального значения:

Сравним ее с предполагаемым снижением издержек производства, т.е. 250-288,93= -38,93:

Поскольку оценивается только значимость уменьшения затрат, то используется односторонний t~ критерий Стьюдента. При ошибке в 5 % с n-2=5 tтабл =2,015, поэтому предполагаемое уменьшение затрат значимо отличается от прогнозируемого значения при 95 % - ном уровне доверия. Однако, если увеличить вероятность до 99%, при ошибке 1 % фактическое значение t -критерия оказывается ниже табличного 3,365, и различие в затратах статистически не значимо, т.е. затраты соответствуют предложенной регрессионной модели.

Нелинейная регрессия

До сих пор мы рассматривали лишь линейную модель регрессионной зависимости у от х (3). В то же время многие важные связи в экономике являются нелинейными. Примерами такого рода регрессионных моделей являются производственные функции (зависимости между объемом произведенной продукции и основными факторами производства - трудом, капиталом и т.п.) и функции спроса (зависимости между спросом на какой-либо вид товаров или услуг, с одной стороны, и доходом и ценами на этот и другие товары - с другой).

При анализе нелинейных регрессионных зависимостей наиболее важным вопросом применения классического МНК является способ их линеаризации. В случае линеаризации нелинейной зависимости получаем линейное регрессионное уравнение типа (3), параметры которого оцениваются обычным МНК, после чего можно записать исходное нелинейное соотношение.

Несколько особняком в этом смысле стоит полиномиальная модель произвольной степени:

(34)

к которой обычный МНК можно применять без всякой предварительной линеаризации.

Рассмотрим указанную процедуру применительно к параболе второй степени:

(35)

Такая зависимость целесообразна в случае, если для некоторого интервала значений фактора возрастающая зависимость меняется на убывающую или наоборот. В этом случае можно определить значение фактора, при котором достигается максимальное или минимальное значение результативного признака. Если исходные данные не обнаруживают изменение направленности связи, параметры параболы становятся трудно интерпретируемыми, и форму связи лучше заменить другими нелинейными моделями.

Применение МНК для оценки параметров параболы второй степени сводится к дифференцированию суммы квадратов остатков регрессии по каждому из оцениваемых параметров и приравниванию полученных выражений нулю. Получается система нормальных уравнений, число которых равно числу оцениваемых параметров, т.е. трем:

(36)

 

Решать эту систему можно любым способом, в частности, методом определителей.

Экстремальное значение функции наблюдается при значении фактора, равном:

.

Если b>0, с<0, имеет место максимум, т.е. зависимость сначала растет, а затем падает. Такого рода зависимости наблюдаются в экономике труда при изучении заработной платы работников физического труда, когда в роли фактора выступает возраст. При b<0, с>0 парабола имеет минимум, что обычно проявляется в удельных затратах на производство в зависимости от объема выпускаемой продукции.

В нелинейных зависимостях, не являющихся классическими полиномами, обязательно проводится предварительная линеаризация, которая заключается в преобразовании или переменных, или параметров модели, или в комбинации этих преобразований. Рассмотрим некоторые классы таких зависимостей.

Зависимости гиперболического типа имеют вид:

(37)

Примером такой зависимости является кривая Филлипса, констатирующая обратную зависимость процента прироста заработной платы от уровня безработицы. В этом случае значение параметра b будет больше нуля. Другим примером зависимости (37) являются кривые Энгеля, формулирующие следующую закономерность: с ростом дохода доля доходов, расходуемых на продовольствие, уменьшается, а доля доходов, расходуемых на непродовольственные товары, будет возрастать. В этом случае b <0, а результативный признак в (37) показывает долю расходов на непродовольственные товары.

Линеаризация уравнения (37) сводится к замене фактора z=1/х, и уравнение регрессии имеет вид (3), в котором вместо фактора х используем фактор z:

(38)

К такому же линейному уравнению сводится полулогарифмическая кривая:

(39)

которая может быть использована для описания кривых Энгеля. Здесь 1п(х) заменяется на z, и получается уравнение (38).

Достаточно широкий класс экономических показателей характеризуется приблизительно постоянным темпом относительного прироста во времени. Этому соответствуют зависимости показательного (экспоненциального) типа, которые записываются в виде:

(40)

или в виде

(41)

Возможна такая зависимость:

(42)

В регрессиях типа (40) - (42) применяется один и тот же способ линеаризации - логарифмирование. Уравнение (40) приводится к виду:

(43)

Замена переменной Y = ln у сводит его к линейному виду:

(44)

где . Если Е удовлетворяет условиям Гаусса-Маркова, параметры уравнения (40) оцениваются по МНК из уравнения (44). Уравнение (41) приводится к виду:

(45)

который отличается от (43) только видом свободного члена, и линейное уравнение выглядит так:

Y=A+bx+E (46)

где A= ln a. Параметры А и b получаются обычным МНК, затем параметр а в зависимости (41) получается как антилогарифм А. При логарифмировании (42) получаем линейную зависимость:

Y=A+Bx+E (47)

где B =ln b, а остальные обозначения те же, что и выше. Здесь также применяется МНК к преобразованным данным, а параметр b для (42) получается как антилогарифм коэффициента В.

Широко распространены в практике социально-экономических исследований степенные зависимости. Они используются для построения и анализа производственных функций. В функциях вида:

(48)

особенно ценным является то обстоятельство, что параметр b равен коэффициенту эластичности результативного признака по фактору х. Преобразуя (48) путем логарифмирования, получаем линейную регрессию:

Y=A+bX+E (49)

где Y= ln y, A= ln a, X= ln x, E= ln ε.

Еще одним видом нелинейности, приводимым к линейному виду, является обратная зависимость:

(50)

Проводя замену и = 1/у, получим:

(51)

Наконец, следует отметить зависимость логистического типа:

(52)

Графиком функции (52) является так называемая «кривая насыщения», которая имеет две горизонтальные асимптоты у=0 и у=1/а и точку перегиба x= ln (b/a), у=1/(2а), а также точку пересечения с осью ординат у=1/(а+b):

Уравнение (52) приводится к линейному виду заменами переменных и=1/у, z=e-x.

Любое уравнение нелинейной регрессии, как и линейной зависимости, дополняется показателем корреляции, который в данном случае называется индексом корреляции:

(53)

Здесь - общая дисперсия результативного признака у, остаточная дисперсия, определяемая по уравнению нелинейной регрессии . Следует обратить внимание на то, что разности в соответствующих суммах и берутся не в преобразованных, а в исходных значениях результативного признака. Иначе говоря, при вычислении этих сумм следует использовать не преобразованные (линеаризованные) зависимости, а именно исходные нелинейные уравнения регрессии. По-другому (53) можно записать так:

(54)

Величина R находится в границах 0 ≤ R ≤ 1, и чем ближе она к единице, тем теснее связь рассматриваемых признаков, тем более надежно найденное уравнение регрессии. При этом индекс корреляции совпадает с линейным коэффициентом корреляции в случае, когда преобразование переменных с целью линеаризации уравнения регрессии не проводится с величинами результативного признака. Так обстоит дело с полулогарифмической и полиномиальной регрессией, а также с равносторонней гиперболой (37). Определив линейный коэффициент корреляции для линеаризованных уравнений, например, н пакете Excel с помощью функции ЛИНЕЙН, можно использовать его и для нелинейной зависимости.

Иначе обстоит дело в случае, когда преобразование проводится также с величиной у, например, взятие обратной величины или логарифмирование. Тогда значение R, вычисленное той же функцией ЛИНЕЙН, будет относиться к линеаризованному уравнению регрессии, а не к исходному нелинейному уравнению, и величины разностей под суммами в (54) будут относиться к преобразованным величинам, а не к исходным, что не одно и то же. При этом, как было сказано выше, для расчета R следует воспользоваться выражением (54), вычисленным по исходному нелинейному уравнению.

Поскольку в расчете индекса корреляции используется соотношение факторной и общей СКО, то R2 имеет тот же смысл, что и коэффициент детерминации. В специальных исследованиях величину R2 для нелинейных связей называют индексом детерминации.

Оценка существенности индекса корреляции проводится так же, как и оценка надежности коэффициента корреляции.

Индекс детерминации используется для проверки существенности в целом уравнения нелинейной регрессии по F- критерию Фишера:

(55)

где n -число наблюдений, m -число параметров при переменных х. Во всех рассмотренных нами случаях, кроме полиномиальной регрессии, m =1, для полиномов (34) m=k, т.е. степени полинома. Величина т характеризует число степеней свободы для факторной СКО, а (п-т-1) - число степеней свободы для остаточной СКО.

Индекс детерминации R2 можно сравнивать с коэффициентом детерминации r2 для обоснования возможности применения линейной функции. Чем больше кривизна линии регрессии, тем больше разница между R2 и r2. Близость этих показателей означает, что усложнять форму уравнения регрессии не следует и можно использовать линейную функцию. Практически, если величина (R2-r2) не превышает 0,1, то линейная зависимость считается оправданной. В противном случае проводится оценка существенности различия показателей детерминации, вычисленных по одним и тем же данным, через t -критерий Стьюдента:

(56)

Здесь в знаменателе находится ошибка разности (R2-r2), определяемая по формуле:

(57)

Если t >tтабл(α;n-m-1), то различия между показателями корреляции существенны и замена нелинейной регрессии линейной нецелесообразна.

В заключение приведем формулы расчета коэффициентов эластичности для наиболее распространенных уравнений регрессии:

Вид уравнения регрессии Коэффициент эластичности
y=a+b·x+ε
y=a+b·x+cx2
y=a·bx·ε x ln b
y=a·xb b
y=a+b ln x+ε

 



Поделиться:


Последнее изменение этой страницы: 2017-02-05; просмотров: 932; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.129.249.105 (0.032 с.)