Применения квантовой электроники 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Применения квантовой электроники



§ Мазеры позволили улучшить чувствительность и стабильность работы радиоустройств, что нашло применение в радиоастрономии (открытие реликтового излучения и межзвездного водорода) и космической связи.

§ Лазеры позволили достичь напряженностей электрического поля, сравнимых с внутриатомными, при которых свойства вещества начинают зависеть от интенсивности световой волны: проявляются эффекты нелинейной оптики. Они позволяют исследовать вещество и управлять характеристиками светового пучка (многофотонные процессы, явления насыщения и резонансного просветления, генерация гармоник, суммарной и разностной частоты, параметрическая генерация света, явления самофокусировки,вынужденное рассеяние света и т.д.)

§ Лазеры используются для создания и управления высокотемпературной плазмы, в том числе для целей термоядерного синтеза.

§ Квантовая электроника привела к существенному повышению разрешения спектроскопических систем (лазерная спектроскопия).

§ Монохроматичность лазерного излучения дает возможность селективного воздействия на вещество, что находит применение в фотохимии и фотобиологии, лазерной очистке и лазерном разделении изотопов.

§ Использование квантовой электроники в метрологии для создания квантовых стандартов частоты и времени, лазерных дальномеров, систем дистанционного химического анализа, лазерной локации.

§ Лазеры широко используются в системах оптической связи и обработки информации, в которых сочетаются принципы волоконной и интегральной оптики.

§ Высокая степень когерентности лазерных источников позволила осуществить идею голографии и голографических приборов.

§ Лазеры находят множество применений в медицине (хирургия, офтальмология и т.д.) и технологии (сварка, резка и т.д.).

 


ОПТОЭЛЕКТРОНИКА

Оптоэлектроника -раздел физики и техники, связанный с преобразованием электромагнитного излучения оптического диапазона в электрический ток и обратно.

Примеры:

1. Бинокль с цифровой фотокамерой.

2. Цифровые фото и видеокамеры.

 

Оптическая электроника (или оптоэлектроника) — самая молодая и, воз­можно, самая перспективная область современной полупроводниковой элект­роники, любимица физиков, разработчиков сверхбыстродействующих ЭВМ и систем сверхдальней связи. Ею занимаются самые передовые лаборатории мира, оснащенные наисовременнейшим оборудованием.

ОПТОЭЛЕКТРОНИКА - область физики и техники, использующая эффекты взаимного преобразования элек-трич. и оптич. сигналов. Хотя эффекты преобразования световой энергии в электрическую (детектирование света с помощью фотоприёмников) и обратное преобразование (электролюминесцентные источники) были известны давно, термин "О." возник лишь после того, как эти преобразования стали использоваться в вычислит. технике, и прежде всего для взаимных превращений световых и электрич. сигналов при отображении, хранении, передаче и обработке информации. Термин "О." вошёл в употребление в 1960-х гг., когда появились приборы - оптроны,в к-рых для обеспечения надёжных гальванич. развязок между электронными цепями используется пара "источник света (светодиод) - приёмник этого излучения".
Применение оптич. сигналов в принципе позволяет увеличить скорость передачи и обработки информации благодаря более высокой несущей частоте и возможности параллельного функционирования мн. каналов. Однако в наиб. степени пока используются такие свойства оптич. сигналов, как высокая помехозащищённость, обеспечение надёжных гальванических развязок между электронными цепями, слабое затухание в волоконных световодах и возможность острой фокусировки.
Поскольку оптоэлектронные приборы предназначены прежде всего для вычислит. техники и информац. систем, они должны обладать компактностью, малым потреблением энергии и высоким кпд.
Осн. элементами О. являются источники излучения (когерентные и некогерентные), фотоприёмники, модуляторы, дефлекторы, волоконные световоды и согласующие элементы, мультиплексоры и демультиплексоры, а также пространственно-временные модуляторы света (управляемые транспаранты), используемые для двумерного динамич. отображения и обработки информации.
Источники излучения. К некогерентным источникам излучения относят источники спонтанного излучения. Это - светодиоды (СД), из к-рых наиб. распространёнными являются СД на основе гетероструктур системы AlGaAs. Рекордный кпд этих СД превышает 20% (однако при ВЧ электрич. модуляции он уменьшается), их быстродействие достигает 0,1 нс. В отличие от когерентных источников СД обладают большой угл. апертурой и спектральной шириной излучения. Изготовляются матрицы СД.
Когерентными источниками излучения в О. служат гл. обр. инжекционные лазеры. Применяются гетероструктуры, из к-рых также наиб. распространёнными являются системы AlGaAs. Вследствие лазерного эффекта ширина линии ~ 0,1 нм, расходимость луча не более 30°, кпд до 50%. Длина волны меняется в зависимости от состава твёрдого раствора активной области. Наиб. освоен (на 1990) диапазон длин волн от
0,78 мкм до 1,55 мкм, хотя существуют более длинноволновые и коротковолновые лазеры. Частота модуляции излучения инжекц. лазеров достигает 20 Ггц. В монолитном (интегральном) виде изготовляются строчки (до 100 элементов на см-1) и матрицы инжекц. лазеров.
Приёмники излучения. В качестве них используются фотодиоды (ФД), гл. обр. pin -диоды и фотодиоды Шоттки. В pin -диодах быстродействие 1 нc, квантовая эффективность до 90%, усиление фототока практически отсутствует, материалы: GaAs ( 0,8 мкм), InGaAs ( = 1,3 - 1,55 мкм). В фотодиодах Шоттки быстродействие также 1 нc; квантовая эффективность до 40%, материалы: п - GaAs, GaAs - AlGaAs, InGaAs ( = 0,82 - 1,6 мкм).
Там, где требуется высокая чувствительность, применяются фототранзисторы и лавинные ФД. Они обладают внутр. усилением до 100 и более; материалы: Ge, InGaAs, InGaPAs, GaAs, Si. В качестве фотоприёмников используются также планарные фотосопротивления с малым зазором между омическими контактами и экстрагирующими электродами, быстродействие 80 - 200 пс, материалы: InGaAs ( = 1,3 - 1,5 мкм), р - GaAs ( 0,85 мкм) и др.
Особое значение для О. приобретают строчки и матрицы фотоприёмников, использующие эффект зарядовой связи в полупроводниках (см. Прибор с зарядовой связью).Эти приёмники позволяют принимать, хранить нек-рое время и последовательно передавать при считывании оптич. сигналы. Такие фотоприёмники широко применяются для регистрации изображений и их последоват. передачи по каналам связи. По чувствительности они не уступают обычным фотоприёмникам. Осн. материал - Si.
Модуляторы. Как правило, в СД и инжекц. лазерах осуществляется внутр. модуляция путём изменения питающего тока. Для внеш. модуляции используется в осн. эл--оптич. эффект в LiNbО3. Однако полуволновое напряжение в этом кристалле более 1 кВ. Разрабатываются др. материалы - с меньшим полуволновым напряжением и технологически интегрально совместимые с излучателями системы AlGaAs и InGaPAs на тех же растворах.
Увеличение числа каналов связи в волоконных СД достигается также путём передачи информации по одному каналу на разных длинах волн, т. е. от разл. источников с соответствующим разделением на приёмных концах. С этой целью применяются мультиплексоры и демультиплексоры, к-рые обычно изготовляются в интегральном виде путём соединения или ветвления оптич. волноводов. Селекторами длин волн являются дифракц. решётки, вводящими и выводящими элементами - призмы. Материалом служит, как правило, LiNbО3 с вводимыми в него легирующими добавками для создания волноводов; большие надежды связываются с твёрдыми растворами соединений AIII Bv и AIIBVI.
Дефлекторы лазерного излучения - необходимые элементы в системах оптич. записи и считывания информации. Они могут быть применены также как модуляторы излучения. Используется либо эл--оптич. эффект в двулучепреломляющих кристаллах либо дифракция на акустич. волнах. Дефлекторы на основе эл--оптич. эффекта более быстродействующие, чем эл--акустические, но обладают меньшей эффективностью.
Пространственно-временные модуляторы света (ПВМС) - матрицы светоклапанных устройств, позволяющие создавать и обрабатывать двумерные изображения. Управление пропусканием ПВМС может осуществляться электрич. или магн. полями (эл--оптически или магн--оптически управляемые транспаранты соответственно) или слабыми световыми сигналами (оптически управляемые транспаранты). Наиб. распространение получили ПВМС на жидких кристаллах. Они обладают наим. полуволновым напряжением (~1В), но их быстродействие не превышает десятков мкс. Применение спец. керамик для ПВМС обеспечивает быстродействие до 10-7 с, но полуволповое напряжение значительно выше (~100 В).
Для передачи оптич. сигналов в О. возможно использование как свободного пространства, так и волоконных световодов, обеспечивающих исключительно высокую домехозащитность при потерях менее 1 дБ/км.
Увеличение кол-ва и ассортимента выпуска элементов О. происходит очень интенсивно, составляя ежегодный прирост ок. 20%, что связано с большим коммерч. выпуском систем, базирующихся на оптоэлек-тронных элементах. Наиб. распространение получили лазерные звукопроигрыватели, в к-рых информация записана в цифровом представлении на жёстких или гибких дисках (компакт-диски) и считывается острофокусируемым лучом инжекц. лазера. Выпускаются (в Японии) видеопроигрыватели, работающие по этому же принципу.
Большое значение приобретают оптоэлектронные элементы для волоконно-оптич. линий связи, к-рые должны заменить совр. кабельные линии связи на длинные и короткие дистанции, решить проблемы кабельного телевидения и видеотелефонов. Несколько свето-волоконных кабелей соединили Америку с Европой, прокладываются кабели через Тихий океан. Источниками световых сигналов в этих линиях являются инжекц. лазеры, приёмники - быстродействующие лавинные ФД; через неск. десятков км располагаются ретрансляц. узлы (лазер - фотоприёмник), компенсирующие ослабление и дисперсию световых сигналов.
О. позволяет создать перестраиваемые процессоры,управляемые ПВМС и матрицами фотоприёмников, а также обеспечивает построение БИС и СБИС (см. Интегральная схема),допускающих интеграцию в третьем (вертикальном) измерении. С О. связывают надежды на возможность дальнейшего совершенствования вычислит. техники: передача информации будет осуществляться оптич. сигналами, что позволит вести обработку одновременно по мн. параллельным каналам, близко расположенным друг к другу, но обладающим высокой помехозащитностью. Проводятся интенсивные исследования по созданию новых оптоэлектронных элементов, к-рые имели бы два устойчивых состояния с разл. оптич. свойствами (оптич. бистабильные элементы) и выполняли бы в оптике роль, аналогичную роли транзисторов в электронике. Создание таких элементов позволит начать конструирование оптических (или оптоэлектронных) вычислит. машин (ОВМ и ОЭВМ), превосходящих по производительности ЭВМ и способных выполнять 1012 операций в с и более.

Приборы оптоэлектроники:

1. Для преобразования света в электрический ток — фото-сопротивления (фоторезисторы), фотодиоды (pin, лавинный), фототранзисторы, фототиристоры, пироэлектрические приёмники, приборы с зарядовой связью(ПЗС), фотоэлектронные умножители (ФЭУ).

2. Для преобразования тока в световое излучение — различного рода лампы накаливания,электролюминесцентные индикаторы, полупроводниковые светодиоды и лазеры (газовые, твердотельные, полупроводниковые).

3. Для изоляции электрических цепей (последовательного преобразования «ток-свет-ток») служат отдельные устройства оптоэлектроники — оптопары — резисторные, диодные, транзисторные, тиристорные, оптопары на одно-переходных фототранзисторах и оптопары с открытым оптическим каналом.

4. Для применения в различных электронных устройствах служат оптоэлектронные интегральные схемы —интегральные микросхемы, в которых осуществляется оптическая связь между отдельными узлами или компонентами с целью изоляции их друг от друга (гальванической развязки).

 

 

Светодио́д или светоизлучающий диод (СД, СИД, LED англ. Light-emitting diode) — полупроводниковый прибор, излучающийнекогерентный свет при пропускании через него электрического тока. Излучаемый свет лежит в узком диапазоне спектра, его цветовые характеристики зависят от химического состава использованного в нем полупроводника. Считается, что первый светодиод, излучающий свет в видимом диапазоне спектра, был изготовлен в 1962 году в Университете Иллинойса группой, которой руководилНик Холоньяк.

Как и в любом полупроводниковом диоде, в светодиоде имеется p-n переход. При пропускании электрического тока в прямом направлении, носители заряда — электроны и дырки — рекомбинируют с излучением фотонов (из-за перехода электронов с одного энергетического уровня на другой).

Не всякие полупроводниковые материалы эффективно испускают свет при рекомбинации. Лучшие излучатели относятся кпрямозонным полупроводникам (то есть таким, в которых разрешены прямые оптические переходы зона-зона), типа AIIIBV (например,GaAs или InP) и AIIBVI (например, ZnSe или CdTe). Варьируя состав полупроводников, можно создавать светодиоды для всевозможных длин волн от ультрафиолета (GaN) до среднего инфракрасного диапазона (PbS).

Диоды, сделанные из непрямозонных полупроводников (например, кремния, германия или карбида кремния), свет практически не излучают. Впрочем, в связи с развитием кремниевой технологии, активно ведутся работы по созданию светодиодов на основе кремния. В последнее время большие надежды связываются с технологией квантовых точек и фотонных кристаллов.

Особенности

По сравнению с другими электрическими источниками света (преобразователями электроэнергии в электромагнитное излучение видимого диапазона), светодиоды имеют следующие отличия:

§ Высокий КПД. Современные светодиоды немного уступают по этому параметру только натриевым газоразрядным лампам [3]. Однако натриевые лампы непригодны для освещения жилых помещений из-за низкого качества света.

§ Высокая механическая прочность, вибростойкость (отсутствие нити накаливания и иных чувствительных составляющих).

§ Длительный срок службы. Но и он не бесконечен — при длительной работе и/или плохом охлаждении происходит «отравление» кристалла и постепенное падение яркости.

§ Спектр современных люминофорных диодов аналогичен спектру люминесцентных ламп, которые давно используются в быту. Схожесть спектра обусловлена тем, что в этих светодиодах также используется люминофор, преобразующий ультрафиолетовое или синее излучение в видимое с хорошим спектром.

§ Малая инерционность.

§ Малый угол излучения — также может быть как достоинством, так и недостатком.

§ Низкая стоимость индикаторных светодиодов, но высокая стоимость при использовании в освещении.

§ Безопасность — не требуются высокие напряжения.

§ Нечувствительность к низким и очень низким температурам. Однако, высокие температуры противопоказаны светодиоду, как и любым полупроводникам.

§ Отсутствие ядовитых составляющих (ртуть и др.) и, следовательно, лёгкость утилизации.

Применение светодиодов

Применение светодиодов всветофоре

Применение светодиодов вфарах

Основная статья: Светодиодное освещение

§ В уличном, промышленном, бытовом освещении.

§ В качестве индикаторов, в виде одиночных светодиодов (например индикатор включения на панели прибора) так и в виде цифрового или буквенно-цифрового табло (например цифры на часах)

§ Массив светодиодов используется в больших уличных экранах, в бегущих строках. Такие массивы часто называют кластерами светодиодов, светодиодными кластерами, или просто кластерами.

§ В оптопарах

§ Мощные светодиоды используются как источник света в фонарях и светофорах

§ Светодиоды используются в качестве источников модулированного оптического излучения (передача сигнала по оптоволокну, пульты ДУ, светотелефоны, интранет[4])

§ В подсветке ЖК экранов (мобильные телефоны, мониторы, телевизоры и т. д.)

§ В играх, игрушках, значках, USB-устройствах, и других гаджетах.

§ В светодиодных дорожных знаках

§ В гибких ПВХ световых шнурах Дюралайт



Поделиться:


Последнее изменение этой страницы: 2017-02-05; просмотров: 759; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.118.29.219 (0.021 с.)