Гликогенолиз и его биологическое значение. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Гликогенолиз и его биологическое значение.



Гликоген-депонированная форма глюкозы.

Распад и синтез Гликоген регулируется гормонами надпочечников и поджелудочной железы, напр. инсулином и адреналином.

Жирными стрелками указан путь распада, тонкими - путь синтеза. Цифрами обозначены ферменты: 1 - фосфорилаза; 2 - фос-фоглюкомутаза; 3 - глюкозо-6-фосфатаза; 4 - гексокиназа (глюкокиназа); 5 - глюко-зо-1-фосфат-уридилтрансфераза; 6 - глико-генсинтаза

Распад гликогена происходит при участии двух ферментов: гликогенфосфорила-зы и фермента с двойной специфичностью — 4:4-трансферазы/а-1,6-гликозидазы.Гликогенфосфорилаза катализирует фосфоролиз 1,4-гликозидной связи нере-дуцирующих концов гликогена (рис. 9.19): глюкозные остатки отщепляются один за другим в форме глюкозо-1-фосфата. При этом гликогенфосфорилаза не может
отщеплять глюкозные остатки от коротких ветвей, содержащих менее пяти глюкозных остатков; такие ветви удаляются 4:4-транс-феразой/а-1,6-гликозидазой. Этот фермент катализирует перенос фрагмента из трех остатков короткой ветви на концевой глюкоз-ный остаток более длинной ветви, кроме того, он гидролизует 1,6-гликозидную связь и таким образом удаляет последний остаток ветви.
Голодание в течение 24 ч приводит практически к полному исчезновению гликогена в клетках печени. Однако при ритмичном питании каждая молекула гликогена может существовать неопределенно долго: при отсутствии пищеварения и поступления в ткани глюкозы молекулы гликогена уменьшаются за счет расщепления периферических ветвей, а после очередного приема пищи вновь вырастают до прежних размеров. Аналогичные процессы происходят и в мышечной ткани, но здесь они в значительной мере определяются режимом мышечной работы.
Глюкозо-1-фосфат, образующийся из гликогена, при участии фосфоглюкомута-зы превращается в глюкозо-6-фосфат, дальнейшая судьба которого в печени и в мышцах различна. В печени глюкозо-6-фосфат превращается в глюкозу при участии глюкозо-6-фосфатазы, глюкоза выходит в кровь и используется в других органах и тканях. В мышцах нет этого фермента, поэтому глюкозо-6-фосфат используется здесь же, в мышечных клетках, распадаясь аэробным или анаэробным путем.

 

 

Гликолиз, его биологическое значение, последовательность реакций гликолиза в анаэробных условиях. Биологическое значение этого процесса. Энергетический выход или КПД гликолиза. Гликолитическая оксидоредукция, субстратное фосфорилирование.

Биологическая роль: интенсивно работающие мышцы в условиях недостаточного обеспечения их кислородом получают за счет анаэробного процесса достаточное количество энергии.

КПД гликолиза составляет 50% т.к. 2моль АТФ могут аккумулировать 100кДж, а общее высвобождение э.=200кДж/моль глюкозы.

 

 

Анаэр. гликолиз – фермент. процесс распада глюкозы в тканях человека и животных без потребления кислорода. Конечным продуктом гликолиза является молочная кислота. Биологическое значение процесса гликолиза заключается в образовании богатых энергией фосфорных соединений. В гексокиназной и фосфофруктокиназной реакциях гликолиза затрачиваются 2 молекулы АТФ. На последующих образуются 4 АТФ (фосфоглицераткиназная и пируваткиназная реакции). Т. о., энергетическая эффективность гликолиза в анаэробных условиях составляет 2 АТФ на 1 молек. глюкозы. В пр-е 1ой минуты работы благодаря анаэр. пр-су достигается гораздо большая мощность, чем при дальнейшей работе. Эритроциты вообще не имеют митохондрий, и их потребность в АТФ целиком удовлетворяется за счет анаэр. гл-за. Интенс. гл-из хар-н также для клеток злокач. опухолей.

Протекает в гиалоплазме кл. 1ой фермент. р-цией гликолиза явл. фосфорилирование, катализируется гексокиназой. 2ой р-цией явл. превращ. глюкозо-6-фос-фата под действием глюкозо-6-фосфат-изомеразы во фруктозо-6-фосфат. 3я р-ция катализ. фосфофруктокиназой; фруктозо-6-фосфат фосфорилируется за счет 2ой молек. АТФ. В 4ой р-ции альдолаза расщеп. фруктозо-1,6-бисфосфат на диоксиацетонфосфат и глицеральдегид-3 фосфат, далее происходит р-ция изомерации под дейст. триозофосфатизомеразы. Обр-м глицеральдегид-3-фосфата завершается 1ая стадия гл-за. 2ая – вкл. ок.-восст. р-цию (реакция гликолитической оксидоредукции), сопряж. с субстр. фосф-м, в пр-се к-го обр-ся АТФ. В 6ой р-ции в присут. глицеральдегидфосфатд/г, кофермента НАД и неорг. фосфата глицеральдегид-3-фосфат подвергается окислению с образованием 1,3-бисфосфоглицерата и НАДН. 7ая р-ция катализ. фосфоглицераткиназой, происходит передача фосфатной группы в положении 1 на АДФ с образованием АТФ и 3-фосфоглицерата. В 8ой р-ции 3-фосфоглицерат превращ. в 2-фосфоглицерат.

9ая катализ. енолазой, при этом 2-фосфоглицерат в результате отщепления молекулы воды переходит в фосфоенолпируват, а фосфатная связь в положении 2 становится высокоэргической. 10ая разрыв высокоэргической связи и переносом фосфатного остатка от фосфоенолпирувата на АДФ - субстратное фосфорилирование. Катализируется пируваткиназой. В 11ой р-ции восст. ПВК и образуется лактат при участии ЛДГ и НАДН, образовавшегося в 6 р-ции.

 

 



Поделиться:


Последнее изменение этой страницы: 2017-01-24; просмотров: 859; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.141.8.247 (0.005 с.)