Применение имобилизированных ферментов 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Применение имобилизированных ферментов




Особенно ощутимый вклад иммобилизованные ферменты внесли в тонкий органический синтез, в анализ, в медицину, в процессы конверсии энергии, в пищевую и фармацевтическую промышленности.

Для синтетической органической химии важно то, что в двухфазных реакционных средах фермент сохраняет каталитическую активность даже при исключительно малом содержании воды, поэтому равновесие катализируемой реакции (выход продукта) экспериментатор может регулировать в широких пределах, подбирая нужный органический растворитель. Иммобилизованные ферменты дали толчок к созданию принципиально новых методов "безреагентного" непрерывного анализа многокомпонентных систем органических (в ряде случаев и неорганических) соединений.

В будущем важную роль в контроле окружающей среды и в клинической диагностике должны сыграть такие методы, как биолюминесцентный анализ и иммуноферментный анализ.

В медицине иммобилизованные ферменты открыли путь к созданию лекарственных препаратов пролонгированного действия со сниженной токсичностью и аллергенностью. Иммобилизационные подходы способствуют решению проблемы направленного транспорта лекарств в организме.

Проблемы биоконверсии массы и энергии в настоящее время пытаются решить микробиологическим путем. Тем не менее иммобилизованные ферменты вносят ощутимый вклад в осуществление фотолиза воды и в биоэлектрокатализ.

Заслуживает внимание и использование иммобилизованных ферментов в процессах переработки лигноцеллюлозного сырья.

Иммобилизованные ферменты могут использоваться и как усилители слабых сигналов. На активный центр иммобилизованного фермента можно подействовать через носитель, подвергая последний ультразвуковой обработке, механическим нагрузкам или фотохимическим превращениям. Это позволяет регулировать каталитическую активность системы фермент –носитель под действием механических, ультразвуковых и световых сигналов. На этой основе были созданы механо- и звукочувствительные датчики и открыт путь к бессеребряной фотографии.


Промышленные процессы с применением иммобилизованных ферментов внедрены прежде всего в пищевую и фармацевтическую промышленность. В пищевой промышленности с участием иммобилизованных ферментов идут процессы получения глюкозо-фруктозных сиропов (фермент глюкозоизомераза), глюкозы, яблочной и аспарагиновой кислоты (ферменты соотв. фумараза и аспартаза в иммобилизов. клетках), оптически активных L-аминокислот, диетического безлактозного молока (фермент лактаза, или b-галактозидаза), сахаров из молочной сыворотки и др.

В медицине иммобилизованные ферменты используются также как лекарственные препараты, особенно в тех случаях, когда необходимо локальное воздействие. Кроме того, биокатализаторы широко используются в различных аппаратах для перфузионной очистки различных биологических жидкостей. Возможности и перспективы использования в медицине ферментов в иммобилизованном состоянии гораздо шире, чем достигнутые на сегодняшний день, именно на этом пути медицину ждет создание новых высокоэффективных методов лечения.

ЗАКЛЮЧЕНИЕ

Важным этапом развития инженерной энзимологии стала раз­работка способов получения и использования иммобилизованных ферментов и иммобилизованных клеток.

Создание биокатализаторов нового поколения, имеющих ряд существенных преимуществ, открыло перед прикладной энзимологией новые перспективы. Иммобилизация – это методический прием, при котором молекулу биокатализатора включают в какую-либо фазу, отделенную от фазы свободного раствора, но способную обмениваться с ней молекулами субстрата, эффектора или ингибитора. Успешное использование иммобилизованных ферментов в значительной мере определяется выбором подходящего сочетания носителя и метода иммобилизации, а также знанием кинетики реакций с участием таких катализаторов.

Многие проблемы технологии синтеза органических соедине­ний, пищевой и медицинской промышленности, мониторинга че­ловека и окружающей среды, защиты окружающей среды, энер­гетики не могут быть решены без использования методов совре­менной инженерной энзимологии. Бесспорно нужно и далее развивать это направление биотехнологии, в силу его перспективности.

 

Приложения.

Приложение 1.

Рис.1 Принципиальная технологическая схема процесса глубинного культивирования микроорганизмов

1 – смеситель питательной среды;

2 – колонна для непрерывной стерилизации потока питательной среды острым паром;

3 – теплообменник – выдерживатель;

4 – теплообменник для охлаждения потока питательной среды;

5 – инокуляторы (посевные аппараты);

6 – индивидуальный фильтр для очистки воздуха, подаваемого в инокулятор;

7 – реактор – ферментер;

8,9 – насосы;

10 – масляный фильтр для предварительной очистки воздуха;

11 – компрессор;



Поделиться:


Последнее изменение этой страницы: 2017-01-19; просмотров: 196; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.128.203.143 (0.008 с.)