Каковы основные виды пробоев твердого диэлектрика? Каковы характерные отличия электрического пробоя от электротеплового пробоя твердого диэлектрика. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Каковы основные виды пробоев твердого диэлектрика? Каковы характерные отличия электрического пробоя от электротеплового пробоя твердого диэлектрика.



1.1 Терминология и определения

Электрическим пробоем изоляции называют явление потери изоляцией изоляционных свойств при превышении напряжением на изоляции критического значения. Это значение напряжения называют пробивным напряжением изоляции Uпр

Электрическим пробоем диэлектрика называется явление потери диэлектриком изоляционных свойств при превышении напряженностью электрического поля критического значения. Электрической прочностью диэлектрика Епр называют среднее значение напряженности электрического поля в межэлектродном промежутке непосредственно перед пробоем, поскольку проще всего измерять и оценивать именно эту величину: , S - расстояние между электродами.

Атомы и молекулы диэлектрика характеризуются очень сильной связью между собой заряженных частиц, так что в обычном состоянии все заряженные частицы связаны, взаимно компенсируют друг друга и перемещения заряженных частиц на расстояния, сопоставимые с расстоянием между электродами, не происходит. При пробое происходит освобождение заряженных частиц, которые направленно перемещаются под действием сил электрического поля, создавая электрический ток.

Наиболее изученным является пробой газовых промежутков; механизмы пробоя жидких и твердых диэлектриков отличаются большим разнообразием и значительно более сложны. В то же время именно газовая изоляция (воздух) является основным видом изоляции в электроустановках и изучение поведения ее в электрических полях большой напряженности имеет первостепенное значение.

Электрическая прочность газового промежутка зависит как от расстояния между электродами, так и - в равной степени - от давления и температуры газа. Очень сильно на электрическую прочность изоляционного промежутка - и не только газового промежутка - влияет форма электродов. Кроме того, электрическая прочность сложным образом зависит от скорости нарастания напряжения, определяя возможности пробоя изоляционного промежутка от длительности приложенного напряжения.

По степени однородности электрического поля, зависящей от формы электродов, различают два вида изоляционных промежутков:

- изоляционные промежутки с однородным и слабонеоднородным электрическим полем (СНП);

- изоляционные промежутки с резконеоднородным электрическим полем (РНП).

Количественной характеристикой степени однородности поля является коэффициент неоднородности , представляющий собой отношение максимального значения напряженности электрического поля в изоляционном промежутке к среднему значению напряженности электрического поля.

К промежуткам с СНП относятся промежутки, у которых это промежутки с электродами типа плоскость - плоскость с закругленными краями или промежутки с электродами типа шар - шар, если радиусы шаров много больше расстояния между их поверхностями.

К промежуткам с РНП относят промежутки, имеющие

Наиболее резко выраженными изоляционными промежутками этого типа являются промежутки с электродами стержень - плоскость.

1.4. Пробой изоляции

Очень малая концентрация свободных заряженных частиц в диэлектрике приводит к очень малым сквозным токам в изоляции при небольших напряжениях. При пробое концентрация свободных заряженных частиц резко повышается. Это повышение обусловлено следующими шестью группами физических механизмов, из которых для газов имеют значение первые четыре группы механизмов.

1. При столкновении нейтрального атома или молекулы с частицей, движущейся с большой скоростью (чаще всего это электрон) может произойти отрыв электрона от нейтрального атома или молекулы с образованием свободного электрона и положительного иона. Этот эффект называется ударной ионизацией, и он происходит, если кинетическая энергия ионизирующей частицы превышает энергию, необходимую для отрыва электрона (энергию ионизации), W кин>=W и. При таком процессе концентрация свободных зарядов увеличивается и растет электрический ток. Количество носителей заряда уменьшается не только из-за переноса частиц на электроды, но и из-за явления рекомбинации, то есть нейтрализации иона частицей с противоположным по знаку зарядом.

2. Фотоионизация в объеме газа имеет место при воздействии жесткого электромагнитного излучения, к которому относятся ультрафиолетовые лучи, рентгеновское и гамма-излучение. Фотоионизация происходит в случае, если энергия кванта электромагнитного излучения не менее величины энергии ионизации, hνW и , h - постоянная Планка, ν - частота электромагнитного излучения.

3. При обычных температурах в диэлектриках не происходит отрыва электронов при тепловых соударениях частиц, поскольку энергии теплового движения даже у самых быстрых частиц недостаточно для ионизации. Термическая ионизация при тепловых соударениях становится заметной при температурах в тысячи градусов Цельсия.

4. В ряде случаев происходит эмиссия электронов с поверхности электродов (из катода), при которой электроны проникают вглубь диэлектрика. Различают четыре вида эмиссии:

- термоэлектронная эмиссия - освобождение электронов из катода при его нагреве; в отличие от термической ионизации требуется сравнительно небольшая температура в несколько сотен градусов;

- фотоэлектронная эмиссия - освобождение электронов при облучении катода коротковолновым электромагнитным излучением (эффект Столетова); для многих металлов достаточно облучения видимым светом;

- освобождение электронов из металла за счет высокой напряженности электрического поля порядка 105 - 106 В/см, которая может быть реализована на остриях;

- вторичная электронная эмиссия - освобождение электронов из катода при бомбардировке его тяжелыми частицами (положительными ионами).

5. Процессы пробоя жидких и твердых диэлектриков отличаются большим разнообразием и сложностью. В жидких диэлектриках большое значение имеют тепловые ионизационные процессы, то есть нагрев жидкости с ее разложением, приводящий к появлению газовых пузырьков и развитию в них процессов ионизации, поскольку газовые диэлектрики обычно имеют существенно меньшую электрическую прочность. Другим важнейшим фактором пробоя жидкого диэлектрика является наличие в нем посторонних примесей (твердых примесей, влаги и газовых пузырьков), вызывающих локальное увеличение напряженности электрического поля.

6. В твердых диэлектриках пробой может вызываться как электрическими процессами (то есть ударной ионизацией), так и тепловыми процессами, возникающими под действием электрического поля. Немалую роль в твердых диэлектриках играют и электрохимические процессы, то есть разложение твердого диэлектрика под действием химически активных ионизированных частиц. При электрических процессах сильно различаются электрические прочности диэлектриков однородной и неоднородной структуры. В случае разогрева диэлектрика под действием приложенного электрического поля происходит электротепловой пробой, а при ионизации газовых включений с разложением твердого диэлектрика сравнительно медленно развивается электрохимический пробой.



Поделиться:


Последнее изменение этой страницы: 2016-12-30; просмотров: 548; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.216.34.146 (0.008 с.)