Надежная работа подземных теплопроводов в значительной мере определяется их коррозионной стойкостью. В тепловых сетях наблюдаются два вида коррозии: внутренняя и наружная. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Надежная работа подземных теплопроводов в значительной мере определяется их коррозионной стойкостью. В тепловых сетях наблюдаются два вида коррозии: внутренняя и наружная.



Основная причина появления внутренней коррозии — присутствие в сетевой воде растворенного кислорода. В водяные тепловые сети кислород попадает в основном с подпиточной водой. Скорость коррозии зависит от концентрации кислорода и скорости диффузии его к поверхности металла. Чем больше растворенного кислорода и выше температура теплоносителя, тем интенсивнее протекает коррозия. Коррозионные отложения часто в виде шлама забивают арматуру. Для предупреждения внутренней коррозии необходимо поддерживать в трубопроводах избыточное давление не менее 0,05 Мпа и производить подпитку только деаэрированной водой.

Если опасность внутренней коррозии практически устраняется при подпитке тепловых сетей деаэрированной водой, то наружная коррозия стальных труб до сих пор продолжает оставаться основным фактором, сокращающим долговечность тепловых сетей. Наружная коррозия тепловых сетей в зависимости от способа про­кладки и условий эксплуатации может быть вызвана электрохимическим взаимодействием металла труб с увлажненной тепловой изоляцией и блуждающими токами, стекающими с поверхности труб в грунт через увлажненную тепловую изоляцию.

Для защиты труб тепловых сетей от наружной коррозии в зависимости от способа прокладки и температуры теплоносителя применяют пассивную защиту с помощью изолирующих антикоррозионных покрытий, защищающих стальные трубы от внешнего воздействия. Покрытия выбирают в соответствии с СниП 41-02-2003 «Тепловые сети» (таблица).

Для защиты труб применяют также активную (электрическую) защиту. Проектирование этой защиты трубопроводов тепловых сетей от коррозии должно выполняться специализированной организацией, оснащенной специальной изыскательской аппаратурой. Для зашиты трубопроводов тепловых сетей от коррозии блуждающими токами при подземной прокладке следует предусматривать мероприятия с учетом требований Инструкции по защите тепловых сетей от электрохимической коррозии:

— удаление трассы тепловых сетей от рельсовых путей электрифицированного транспорта и уменьшение числа пересечений с ним;

— увеличение переходного сопротивления сетей путем применения электроизолирующих неподвижных и подвижных опор труб;

— увеличение продольной электропроводности трубопроводов путем установки электроперемычек на сальниковых компенсаторах и на фланцевой арматуре;

— уравнивание потенциалов между параллельными трубопроводами путем установки поперечных электроперемычек между смежными трубопроводами при применении электрохимической защиты;

— установку электроизолирующих фланцев на трубопроводах на вводе тепловой сети (или в ближайшей камере) к объектам, которые могут являться источниками блуждающих токов (трамвайное депо, тяговые подстанции, ремонтные базы и т.п.);

— электрохимическую защиту.

Для обеспечения эффективного действия средств электрохимической защиты на фланцевых соединениях трубопроводов должны быть предусмотрены продольные электроперемычки кабелем или шинами с поперечным сечением не менее 50 мм2 по меди. Для уравнивания потенциалов между параллельными нитками трубопроводов в случаях применения электрохимической защиты следует предусматривать поперечные электроперемычки с интервалами между ними не более 200—300 мм.

47 Тепловой насос — устройство для переноса тепловой энергии от источника низкопотенциальной тепловой энергии (с низкой температурой) к потребителю (теплоносителю) с более высокой температурой[1]. Термодинамически тепловой насос аналогичен холодильной машине. Однако если в холодильной машине основной целью является производство холода путём отбора теплоты из какого-либо объёма испарителем, а конденсатор осуществляет сброс теплоты в окружающую среду, то в тепловом насосе картина обратная. Конденсатор является теплообменным аппаратом, выделяющим теплоту для потребителя, а испаритель — теплообменным аппаратом, утилизирующим низкопотенциальную теплоту: вторичные энергетические ресурсы и (или) нетрадиционные возобновляемые источники энергии.

 



Поделиться:


Последнее изменение этой страницы: 2016-12-30; просмотров: 237; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.174.168 (0.004 с.)