Квантово-механическое рассмотрение химической связи. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Квантово-механическое рассмотрение химической связи.



Ковалентная связь

Получить ответ, удовлетворительно объясняющий природу и механизм химической связи, оказалось воз­можным только после появления квантово-механической теории строения атома, так как при образовании связи проявляются специфические для микрообъектов свойства электронов.

С точки зрения квантовой механики при образовании химической связи между атомами их электронные орбитали перекрываются. В результате в межъядерной облас­ти создается повышенная электронная плотность по сравнению с электронной плот­ностью в изолированных атомах, которая как бы стягивает ядра в единую устойчивую систему (рис.1, а). В силу осо­бенностей электронных со­стояний между ядрами может происходить не повышение электронной плотности, а, наоборот, уменьшение ее до нуля. В этом случае химическая связь не образуется (рис. 1, б). Причины ус­тойчивости многоатомной частицы заключаются в по­нижении энергии ее образования. Рассмотрим, например, изменение энергии при сближении двух атомов водорода, находящихся на бесконечно большом расстоянии (r = ∞) друг от друга. Потенциальную энергию Е при г = ∞ примем равной нулю.

 

 

Рис.1 Взаимодействие между атомами водорода, приводящее к образованию связи (а) и не приводящее к образованию связи (б)

 

 

 

Система состоит из двух протонов и двух электронов. Между частицами возникает два типа сил: силы оттал­кивания между электронами двух атомов и протонами атомов и силы притяжения между протонами и электро­нами.

Если спины электронов антипараллельны, то при сбли­жении атомов происходит уменьшение потенциальной энергии системы и при r= r0 силы притяжения становят­ся равными силам отталкивания, а энергия системы при­нимает свое минимальное значение. При дальнейшем сближении атомов силы отталкивания будут больше сил притяжения и потенциальная энергия системы начинает резко возрастать. Графическая зависимость потенциаль­ной энергии системы из двух атомов водорода от межъядерного расстояния, называемая ПОТЕНЦИАЛЬ­НОЙ КРИВОЙ, представлена на рис.2.

Таким образом, при сближении двух атомов водорода с электронами, обладающими антипараллельными спи­нами, на расстояние r0 система имеет минимальную энер­гию и, следовательно, в этом случае образуется устойчи­вая химическая связь (рис. 2, а).

В случае, когда спины па­раллельны, квантово-механические расчеты по урав­нению Шредингера показы­вают, что потенциальная энергия системы при любом расстоянии между сближающимися атомами больше, чем сумма энергий двух отдельных атомов и образование химической связи невозможно. Потенциальная кривая в данном случае выглядит иначе (рис. 2, б).

В заключение отметим, что в рамках этой модели ядро атома не закрепляется неподвижно в точке О, а постоянно колеблется. В реальной же двухъядерной молекуле ко­леблются оба ядра, достигая определенных предельных состояний. Молекулы все время как бы растягиваются и сжимаются. При этом го — среднее расстояние между яд­рами, а Еmin — минимальная энергия молекулы с учетом колебания ядер.

 

 

Рис 2. потенциальная кривая


 

Количественные характеристики химической связи

Химическая связь характеризуется рядом параметров. Чаще всего говорят об ее энергии и длине. Если молекула состоит из трех и более атомов, то к перечисленным пара­метрам добавляют еще один — валентные углы.

ЭНЕРГИЕЙ СВЯЗИ называют ту энергию, которую необходимо затратить для ее разрыва. При этом молекула должна находиться в основном (невозбужденном) состо­янии и при 0оК. Эта величина определяет прочность связи. Чем больше энергия, затрачиваемая на разрыв связи, тем прочнее связь. Единица измерения энергии связи — кДж/моль. Например, энергия связи Н—Н в молекуле водорода равна 436 кДж/моль. Если в молекуле несколь­ко одинаковых связей, то, очевидно, для разрушения каждой следующей потребуется различная энергия и в таком случае говорят о средней энергии связи.

Величина энергии химических связей в большинстве соединений колеблется в пределах 100-1000кДж/моль. Энергия связи в ряду однотипных молекул постепенно изменяется. Например, энергия связи Н-Г в ряду гало-геноводородов HF, HC1, HBr, HI уменьшается с 565,7 кДж/моль у HF, до 294,7 кДж/моль у HI. Зная энергию связей в молекуле, можно судить также о ее ре­акционной способности и производить различные термо­химические расчеты.

ДЛИНОЙ СВЯЗИ называют среднее расстояние между ядрами, отвечающее минимуму энергии системы. На рис. 2. длина связи между атомами водорода измеря­ется отрезком гo. Современными методами исследования структуры веществ можно определить длины связей с точ­ностью, которую допускает принцип неопределенности.

В ряду аналогичных по составу молекул длины связей также изменяются закономерно. Например, в ряду HF, НС1, HBr, HI длина связи увеличивается с возрастанием размера атома и соответственно равна 0,091; 0,127; 0,141; 0,160нм. В молекулах, близких по химической природе, одного гомологического ряда, длины связей между ядрами элементов мало различаются и могут считаться практи­чески постоянными (например, длины связей С - С в пре­дельных углеводородах и т. д.).

Кроме того, на длину связи влияет ее кратность, ко­торая определяется числом электронных пар, связываю­щих два атома. С увеличением кратности связей происходит их упрочнение, межъядерные расстояния уменьша­ются. Так, длина связи С—С равна 0,154 нм, С = С - 0,135 нм и С ≡ С - 0,121 нм.

ВАЛЕНТНЫЕ УГЛЫ. Это углы между связями в молекуле. Их схематически можно представить как углы между прямыми линиями, соединяющими ядра атомов в молекуле. Эти воображаемые прямые, проведенные через два ядра, называют линиями связи. Величины валентных углов зависят от природы атомов и характера связи. Простые двухатомные молекулы всегда имеют линейную структуру. Трехатомные и более сложные молекулы могут обладать различными конфигурациями. Например, в мо­лекуле воды угол между линиями связи Н—О равен 104,5°, а в сходной молекуле сероводорода валентный угол между связями составляет 92°.

Все рассмотренные параметры химической связи можно определить экспериментально при исследовании молекулярных спектров веществ. Их также, в боль­шинстве случаев, можно найти в справочнике.

Для описания и расчета ковалентной связи широко используются два метода — метод валентных связей (МВС) и метод молекулярных орбиталей (ММО).

Метод валентных связей

Основные положения метода валентных связей, ба­зирующиеся на квантово-механической теории строения атома, были разработаны Вальтером Гейтлером и Фритцем Лондоном в 1928 году. В последующем значительный вклад в развитие этого метода внесли Лайнус Полинг и Джон Слейтер. С точки зрения этого метода:

1. В образовании связи участвуют только электроны внешней электронной оболочки атома (валентные элек­троны).

2. Химическая связь образуется двумя валентными электронами различных атомов с антипараллельными спи­нами. При этом происходит перекрывание электронных орбиталей и между атомами появляется область с повышенной электронной плотностью, обусловливающая связь между ядрами атомов. Таким образом, в основе МВС лежит образование двухэлектронной, двухцентровой связи.

3. Химическая связь осуществляется в том направле­нии, в котором обеспечивается наибольшее перекрывание атомных орбиталей.

4. Из нескольких связей данного атома наиболее проч­ной будет связь, которая получилась в результате наибольшего перекрывания атомных орбиталей.

5. При образовании молекул электронная структура (кроме внешней электронной оболочки) и химическая индивидуальность каждого атома в основном сохраняются.

Известны два механизма образования общих электрон­ных пар: обменный и донорно-акцепторный.

ОБМЕННЫЙ МЕХАНИЗМ объясняет образование ковалентной химической связи участием в ней двух элек­тронов с антипараллельными спинами (по одному от каж­дого атома).

ДОНОРНО-АКЦЕПТОРНЫЙ МЕХАНИЗМ предпола­гает образование ковалентной химической связи за счет неподеленной пары (не участвовавшей ранее в образова­нии связи) одного из связывающихся атомов и вакантной орбитали другого атома. Например, при сближении молекулы аммиака и иона водорода неподеленная пара электронов атома азота занимает ва­кантную орбиталь иона водорода. Это приводит к образо­ванию общей электронной пары и, следовательно, к об­разованию химической связи между ними. Первый атом называют ДОНОРОМ, второй — АКЦЕПТОРОМ. Вещества, в которых есть химические связи донорно-акцепторного происхожде­ния, широко распространены среди неорганических со­единений. Большая часть таких соединений относится к так называемым комплексным соединениям.

Метод молекулярных орбиталей (ММО)

Метод валентных связей в большинстве случаев позво­ляет получать правдивую информацию о структуре и свойствах различных молекул и ионов. Однако имеется ряд экспериментальных фактов, которые не могут быть объяснены на основании этого метода. Так, не удается объяснить магнитные свойства ряда веществ (О2, В2 и др.) и существование молекул с нечетным числом электронов (NО и др.).

Эти и другие факты способствовали созданию иного квантово-механического метода описания ковалентной химической связи — МЕТОДА МОЛЕКУЛЯРНЫХ ОРБИТАЛЕЙ (ММО). Основы ММО разработаны Робертом Малликеном и Фридрихом Хундом (1928-1930 гг.).

В методе МО подход к рассмотрению структуры моле­кулы близок к тому, которым мы пользовались при рас­смотрении строения атома. Метод основан на следующих положениях:

Молекула рассматривается как единая система ядер и электронов, а не как совокупность атомов, сохраняю­щих некоторую индивидуальность. Она образуется, если энергия такой системы ниже, чем энергия исходных атомов.

Подобно тому как электроны в атомах располагают­ся на атомных орбиталях (АО), общие электроны в моле­куле располагаются на молекулярных орбиталях (МО). Совокупность молекулярных орбиталей, занятых электронами, определяет электронную конфигурацию моле­кулы.

Существует несколько приближенных методов расчета молекулярных орбиталей. Наиболее простой называется методом линейной комбинации атомных орбиталей (МЛК АО). С точки зрения МЛК АО молекулярную орбиталь рассматривают как линейную комбинациюсоответствующих атомных орбиталеи в изолированных атомах, ядра которых входят в состав молекулы.

4. В образовании молекулярной орбитали участвуют только те АО, которые имеют близкую по величине энергию и приблизительно одинаковую симметрию относи­тельно оси связи.

5. При взаимодействии двух атомных орбиталеи в результате их линейной комбинации образуются две молекулярных орбитали с большей и меньшей энергиями, чемэнергия исходных АО. В результате сложения АО образуется МО с повышенной межъядерной электронной плотностью (меньшей энергией). Такую орбиталь называют связывающей. В случае вычитания АО образуется МО с пониженной межъядерной электронной плотностью
(большей энергией), называемая разрыхляющей. Сумма энергии образовавшихся МО в первом приближении равна сумме энергий АО, из которых они образова­лись.

6. Число всех образовавшихся МО равно сумме АО ис­ходных атомов. При этом число связывающих и разрыхляющих МО одинаково у гомоядерных молекул (содержащих одинаковые ядра) или равно числу участвующих в
образовании связи АО того атома, у которого их меньше.

7. Молекулярные орбитали по аналогии с атомными обозначаются греческими буквами s, p, d. Каждая МОхарактеризуется набором трех квантовых чисел. В соот­ветствии с принципом Паули на молекулярной орбитали, как и на атомной, не может быть больше двух электронов.

8. Все имеющиеся в молекуле электроны распределя­ются по МО с соблюдением тех же принципов и правил, что и при заполнении электронами орбиталеи в отдельных атомах (принцип наименьшей энергии, принцип Паули, правило Хунда). Электрон, находящийся на связывающей орбитали, увеличивает энергию связи, а электрон, находящийся на разрыхляющей орбитали, ее уменьшает.

9. Стабильность молекулы определяется разностью числа связывающих и разрыхляющих электронов. Если эта разность равна нулю, частица не образуется. Для того, чтобы можно было сопоставить число связей по МВС и
ММО, используют понятие порядок связи (кратность). По­рядок связи (N) равен разности между числом электронов, находящихся на связывающих орбиталях, и числомэлектронов на разрыхляющих орбиталях, деленной на 2.
Он может принимать целые или дробные положительныезначения.

Сравнение методов валентных связей и молекулярных орбиталей

Вначале отметим, что методы валентных связей и мо­лекулярных орбиталей являются приближенными. Каж­дый метод имеет свои преимущества и недостатки.

Метод МО позволяет описывать и прогнозировать свой­ства молекулы, зависящие от состояния в них отдельных электронов, такие как устойчивость и неустойчивость. Так, например, с точки зрения ММО, устойчив молеку­лярный ион Щ и, наоборот, неустойчивы Не2, Ве2. С по­зиций метода ВС это необъяснимо.

В рамках метода МО хорошо объясняются и прогнози­руются магнитные свойства молекул, также необъясни­мые с позиций МВС. Однако в рассмотренном простейшем варианте ММО не способен передавать насыщаемость ко-валентной связи (т. е. состав молекулы). Для МВС этот недостаток менее характерен. Расчет геометрической структуры и определение важнейших параметров моле­кулы с помощью ММО является трудной математической задачей, для решения которой необходимы мощные ЭВМ.

Из сказанного выше можно сделать вывод о том, что наиболее общим и последовательным методом для описа­ния строения молекул является метод молекулярных ор­биталей. Тем не менее, метод валентных связей дает воз­можность, основываясь на небольшом числе предположе­ний, связывать между собой в стройную систему важ­нейшие опытные данные, и применение этого метода во многих случаях более наглядно и вполне оправдано. Спор о том, какой из методов вернее, беспредметен. Правильнее считать, что они взаимно дополняют друг друга.

Свойства ковалентной связи

Ковалентная связь обладает рядом важных свойств. К их числу относятся: насыщаемость и направленность.

НАСЫЩАЕМОСТЬ — характерное свойство ковалент­ной связи. Она проявляется в способности атомов образо­вывать ограниченное число ковалентных связей. Это свя­зано с тем, что одна орбиталь атома может принимать участие в образовании только одной ковалентной хими­ческой связи. Данное свойство определяет состав молеку­лярных химических соединений. Так, при взаимодейст­вии атомов водорода образуется молекула Н2, а не Н3. С точки зрения МВС третий атом водорода не может присо­единиться, так как спин его электрона окажется парал­лельным спину одного из спаренных электронов в молеку­ле. Способность к образованию того или иного числа кова­лентных связей у атомов различных элементов ограни­чивается получением максимального числа неспаренных валентных электронов.

НАПРАВЛЕННОСТЬ — свойство ковалентной связи, определяющее геометрическую структуру молекулы. Причина направленности связи заключается в том, что перекрывание электронных орбиталей возможно только при их определенной взаимной ориентации, обеспечиваю­щей наибольшую электронную плотность в области их перекрывания. В этом случае образуется наиболее проч­ная химическая связь.

Полярность связей и молекул

В молекулах положительные заряды ядер скомпенси­рованы отрицательными зарядами электронов. Однако по­ложительные и отрицательные заряды могут быть про­странственно разделены. Предположим, что молекула со­стоит из атомов разных элементов (НС1, СО и т. д.). В этом случае электроны смещены к атому с большей электроотрицательностью и центры тяжести положительных и отрицательных зарядов не совпадают, образуется электри­ческий диполь — система из двух равных по величине и противоположных по знаку зарядов q, находящихся на расстоянии l, называемом длиной диполя. Длина дипо­ля — векторная величина. Ее направление условно приня­то от отрицательного заряда к положительному. Такие мо­лекулы называют полярными молекулами или диполями.

Полярность молекулы тем больше, чем больше абсо­лютная величина заряда и длина диполя. Мерой поляр­ности служит произведение q . l, называемое электрическим моментом диполя μ: μ = q . l.

Единицей измерения μ служит Дебай (Д). 1 Д = 3,3 . 10 -30 Кл . м.

В молекулах, состоящих из двух одинаковых атомов μ = 0. Их называют неполярными. Если такая частица попадает в электрическое поле, то в ней под действием поля произойдет поляризация — смещение центров тя­жести положительных и отрицательных зарядов. В час­тице возникает электрический момент диполя, называе­мый наведенным диполем.

Дипольный момент двухатомной молекулы АВ можно отождествить с дипольным моментом связи А—В в ней. Если общая электронная пара смещена к одному из атомов, то электрический момент диполя связи не равен нулю. Связь в этом случае называется полярной ковалентной связью. Если электронная пара симметрично расположена относительно атомов, то связь называется неполярной.

В многоатомной молекуле определенный электричес­кий момент диполя можно приписать каждой связи. Тогда электрический момент диполя молекулы может быть представлен как векторная сумма электрических мо­ментов диполя отдельных связей. Существование или от­сутствие момента диполя у молекулы связано с ее сим­метрией. Молекулы, имеющие симметричное строение, неполярны (μ = 0). К ним относятся двухатомные моле­кулы с одинаковыми атомами (Н2, С12 и др.), молекула бензола, молекулы с полярными связями BF3, A1F3, CO2, ВеС12 и др.

Электрический момент диполя молекулы является важным молекулярным параметром. Знание величины μ может указать на геометрическую структуру молекулы. Так, например, полярность молекулы воды указывает на ее угловую структуру, а отсутствие момента диполя СО2 — на ее линейность.

Ионная связь

Предельным случаем ковалентной полярной связи яв­ляется ионная связь. Если электроотрицательности атомов различаются очень сильно (например, атомов щелочных металлов и галогенов), то при их сближении валентные электроны одного атома полностью переходят на второй атом. В результате этого перехода оба атома становятся ионами и принимают электронную структуру ближайшего благородного газа. Например, при взаимо­действии атомов натрия и хлора, они превращаются в ионы Na+ и Сl-, между которыми возникает электроста­тическое притяжение. Ионная связь может быть описа­на в рамках методов ВС и МО, однако обычно ее рас­сматривают с помощью классических законов электро­статики.

Молекулы, в которых существует в чистом виде ион­ная связь, встречаются в парообразном состоянии ве­щества. Ионные кристаллы состоят из бесконечных рядов чередующихся положительных и отрицательных ионов, связанных электростатическими силами. При растворении ионных кристаллов или их плавлении в раствор или расплав переходят положительные и отрицательные ионы.

Следует отметить, что ионные связи обладают большой прочностью, поэтому для разрушения ионных кристаллов необходимо затратить большую энергию. Этим объясня­ется тот факт, что ионные соединения имеют высокие тем­пературы плавления.

В отличие от ковалентной связи ионная не обладает свойствами насыщаемости и направленности. Причина этого состоит в том, что электрическое поле, создаваемое ионами, имеет сферическую симметрию и действует оди­наково на все ионы. Поэтому количество ионов, окру­жающих данный ион, и их пространственное расположе­ние определяются только величинами зарядов ионов и их размерами.

Рассматривая ионную связь, необходимо иметь в виду, что при электроста­тическом взаимодействии между ионами происходит их деформация, называе­мая поляризацией. На рис. 2.1, а изображены два взаимодействующие электростатически нейтральных иона и сохраняющие идеально сферическую форму. На рис. 2.1, б показана поляризация ионов, которая при­водит к уменьшению эффективного расстояния между центрами положительных и отрицательных зарядов. Чем больше поляризация ионов, тем меньше степень ионности связи, т. е. тем больше ковалентный характер связи между ними. В кристаллах поляризация оказывается не­высокой, т. к. ионы симметрично окружены ионами про­тивоположного знака и ион подвергается одинаковому воздействию во всех направлениях.

 

 

 

а б

Рис 2.1. Поляризация ионов

 

Металлическая связь

Особенностью всех металлов является их высокая электропроводность и теплопроводность. Эти свойства свидетельствуют о том, что валентные электроны способ­ны свободно перемещаться в пределах кристаллической решетки. Простейшая модель строения металла выглядит так: в узлах кристаллической решетки находятся поло­жительные ионы металла, которые прочно связаны элек­тронным газом. Валентные электроны одновременно на­ходятся на всех доступных орбиталях соседних атомов, осуществляя между ними связь. Такая нелокализованная связь называется металлической. Эта связь является до­статочно прочной, т. к. большинство металлов имеет вы­сокую температуру плавления. Указанная модель объяс­няет также свойственные металлам ковкость (способность расплющиваться в тонкие листы) и пластичность (способ­ность вытягиваться в проволоку). Эти свойства обуслов­лены тем, что подвижный электронный газ позволяет плоскостям, состоящим из положительных ионов, сколь­зить одна по другой.

Более строгую интерпретацию металлической связи позволяет дать метод молекулярных орбиталей. Напо­мним, что при взаимодействии двух атомных орбиталей образуются две молекулярные орбитали: связывающая и разрыхляющая. Происходит расщепление энергетическо­го уровня на два. Если взаимодействуют одновременно че­тыре атома металла, образуются четыре молекулярные ор­битали. При одновременном взаимодействии N частиц, со­держащихся в кристалле, образуется N молекулярных орбиталей, причем величина N может достигать огромных значений, сравнимых с числом Авогадро (6 • 1023). Моле­кулярные орбитали, образованные атомными орбиталями одного подуровня, находятся настолько близко, что прак­тически сливаются, образуя определенную энергетичес­кую зону.

Рассмотрим в качестве примера электронную структуру кристалла лития. Прежде всего, вспомним электронную конфигурацию молекулы Li2, образовавшуюся издвух изолированных атомов. При взаимо­действии N ls-орбиталей в кристалле лития образуется внутренняя энергетическая зона, полностью занятая электронами. Эти электроны не принимают участия в ме­таллической связи. Атом лития имеет один валентный электрон на 2s-орбитали. При взаимодействии N атомов лития 2s -орбитали, на которых находятся валентные электроны, образуют валентную зону. Нижняя часть ва­лентной зоны, образованная связывающими 2s -орбиталями, заполнена электронами, которые перемещаются по кристаллу хаотически. Достаточно близко расположен­ная верхняя часть, образованная разрыхляющими 2s-opбиталями, электронами не занята. При наложении даже незначительной разности потенциалов электроны возбуж­даются и переходят в верхнюю часть валентной зоны, где перемещаются в направлении поля, перенося электри­ческие заряды через весь кристалл. Верхнюю часть ва­лентной зоны называют зоной проводимости. Таким образом, у металлов валентная зона сливается с зоной проводимости. Это связано с тем, что число валентных электронов в атомах металлов относительно невелико и всегда недостаточно для заполнения всех валентных орбиталей.

В атомах неметаллов число валентных электронов ве­лико и валентная зона кристалла практически запол­нена электронами. Зона проводимости в кристаллах, со­держащих атомы или ионы неметаллов, образуется за счет орбиталей, имеющих намного большую энергию по сравнению с валентными орбиталями, т. е. принадле­жащих к следующему электронному уровню. В таких кристаллах между валентной зоной и зоной про­водимости находится запрещенная зона. Электроны не могут перемещаться вдоль кристалла, даже если к нему приложить высокое напря­жение — такие вещества на­зываются изоляторами или диэлектриками.

Промежуточное положе­ние между проводниками электрического тока и диэлектриками занимают полупроводники (кремний, германий, многие сложные вещества). Особенность полупроводников состоит в том, что у них сравнительно небольшая ширина запрещенной зоны. По­этому даже при незначительном нагревании электроны переходят в зону проводимости и вещество проводит электрический ток. В некоторых случаях переход элек­тронов в зону проводимости происходит при освещении — возникает фотопроводимость.

В диэлектриках ширина запрещенной зоны более 3 эВ, а в полупроводниках она составляет 0,1—3 эВ.

Под действием внешнего электрического поля на диэ­лектрик часть его электронов, получив достаточное ко­личество энергии, может переброситься из полностью за­полненной валентной зоны в зону проводимости и участ­вовать в переносе электричества. При этом в валентной зоне появится эквивалентное число так называемых дырок (вакантных мест), имеющих положительный заряд. Они также могут участвовать в переносе тока. Такая прово­димость называется электронно-дырочной.



Поделиться:


Последнее изменение этой страницы: 2016-12-29; просмотров: 866; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.129.19.251 (0.052 с.)