Вводные понятия в курсе ДМ и ОК 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Вводные понятия в курсе ДМ и ОК



ВВОДНЫЕ ПОНЯТИЯ В КУРСЕ ДМ и ОК

Лекция 1 Вводные понятия в курсе ДМ и ОК. Классификация

Типовых деталей машин

Машины и приборы состоят из деталей и узлов. Деталью называют элемент конструкции, изготовленный из материала одной марки без применения сборочных операций. Детали частично могут объединяться в сборочные единицы (узлы). Сборочной единицей называют совокупность деталей, соединенных на предприятии-изготовителе посредством сборочных операций и предназначенных для совместной работы. Простейшая сборочная единица может включаться как составная часть в более сложную. Характерными примерами сборочных единиц являются по мере нарастания сложности подшипник, узел опоры, редуктор.

В машинах количество деталей исчисляется сотнями и тысячами. Несмотря на различное конструктивное оформление и назначение машин, большинство деталей и сборочных единиц (узлов) в них являются типовыми. Типовыми называют детали, которые встречаются практически в любой машине и независимо от назначения машины выполняют одинаковые функции.

Типовые детали можно объединить в несколько характерных групп:

- детали соединений (резьбовых, заклепочных, шпоночных, шлицевых, сварных, клеммовых, прессовых и т.д.);

- детали передач (зубчатых цилиндрических и конических, червячных, ременных, цепных, фрикционных и т.д.)

- валы и оси;

- опоры валов и осей (подшипники);

- детали муфт;

- упругие элементы (пружины, рессоры);

- корпусные детали.

 

Требования, предъявляемые к современным машинам

Детали и узлы машин, как и машины в целом, характеризуются работоспособностью, надежностью, технологичностью, экономичностью и эстетичностью. Работоспособностью называют состояние деталей, при котором они способны нормально выполнять заданные функции с параметрами, установленными нормативно-технической документацией. Под надежностью понимают свойство изделия сохранять свою работоспособность в течение заданного промежутка времени или требуемой наработки. Технологичными называют детали и узлы, требующие минимальных затрат средств, времени и труда в производстве, эксплуатации и ремонте.

Основными критериями работоспособности и расчета деталей машин являются: прочность, жесткость, износостойкость, коррозионная стойкость, теплостойкость, виброустойчивость. Значение того или иного критерия для данной детали зависит от ее функционального назначения и условий работы. Например, для крепежных винтов главным критерием является прочность, а для ходовых винтов - износостойкость.

Основы расчета на прочность изучают в курсе сопротивления материалов. В курсе «Детали машин» общие методы расчетов на прочность рассматривают в приложении к конкретным деталям и придают им форму инженерных расчетов.

Нагрузки на детали машин и напряжения в них могут быть постоянными и переменными по времени. Детали, подверженные постоянным напряжениям в чистом виде, в машинах не встречаются. Однако отдельные детали работают с мало изменяющимися напряжениями, которые при расчете можно принимать за постоянные.

Переменные напряжения характеризуются циклом изменения напряжений: при отнулевом цикле напряжения меняются от нуля до максимума; при знакопеременном симметричном цикле напряжения меняются от отрицательного до такого же положительного значения.

Нагрузки могут изменяться плавно или прикладываться внезапно (удары). Перечислим нагрузки, действующие на ДМ:

- рабочие усилия;

- силы инерции;

- силы трения;

- ударные нагрузки;

- усилия, возникающие при изготовлении детали;

- усилия, возникающие при сборке;

- силы от температурных деформаций;

- силы собственного веса детали;

- атмосферные нагрузки.

При расчетах деталей машин различают номинальную нагрузку и расчетную. Номинальная нагрузка - это наибольшая из длительно действующих нагрузок на сечение детали. Расчетная нагрузка получается умножением номинальной на коэффициент нагрузки.

Жесткость характеризуется изменением размеров и формы детали под нагрузкой. Расчет на жесткость предусматривает ограничение упругих перемещений деталей в пределах, допустимых для конкретных условий работы.

Изнашивание -процесс постепенного изменения размеров деталей в результате трения. При этом увеличиваются зазоры в подшипниках, в зубчатых зацеплениях и т.п. Увеличение зазоров снижает качественные характеристики механизмов -к.п.д., надежность, точность и т.д.

Коррозия - процесс постоянного разрушения поверхностных слоев металла в результате окисления. Коррозия является причиной преждевременного разрушения многих конструкций. Для защиты от коррозии применяют антикоррозионные покрытия или изготовляют детали из специальных коррозионноустойчивых материалов.

Теплостойкость. Нагрев деталей машин может вызвать: понижение прочности материала и появление ползучести; понижение защищающей способности масляных пленок, а, следовательно, увеличение изнашивания деталей; изменение зазоров в сопряженных деталях, которое может привести к заклиниванию или заеданию и т.п.

Виброустойчивостъ. Вибрации вызывают дополнительные переменные напряжения и, как правило, приводят к усталостному разрушению деталей

Лекция 2

СОЕДИНЕНИЯ ДЕТАЛЕЙ

Лекция 3.

Лекция 4

Соотношение между окружными и осевыми усилиями в винтовой паре.

Лекция 5

Заклепочные соединения

Заклепка представляет собой сплошной или полый стержень круглого сечения с головками на концах, одну из которых, называемую закладкой, выполняют на заготовке заранее, а вторую, называемую замыкающей, формируют при клепке (осадке). Заклепочные соединения образуют постановкой заклепок в совмещенные отверстия соединяемых элементов и расклепкой с осаживанием стержня.

Основными материалами склепываемых деталей являются малоуглеродистые стали Ст.0, Ст.2, Ст.3, цветные металлы и их сплавы. Требования к материалу заклепки:

1. Высокая пластичность для облегчения процесса клепки;

2. Одинаковый коэффициент температурного расширения с материалом деталей во избежание дополнительных температурных напряжений в соединении при колебаниях температуры.

3. Однородность с материалом склепываемых деталей для предотвращения появления гальванических токов, сильно разрушающих соединения.

 
 

 


Рисунок 10

 

Расчет на прочность основан на следующих допущениях:

- силы трения на стыке деталей не учитывают, считая, что вся нагрузка передается только заклепками;

- расчетный диаметр заклепки равен диаметру отверстия d0;

- нагрузки между заклепками распределяются равномерно.

Рассмотрим простейший заклепочный шов - однородный односрезный внахлестку. При нагружении соединения силами F, листы стремятся сдвинуться относительно друг друга. Запишем условие прочности заклепки на срез (разрушение стержня заклепки нахлесточного соединения происходит по сечению, лежащему в плоскости стыка соединяемых деталей)

 

,

 

 
 

 


Рисунок 11

 

отсюда требуемый диаметр заклёпки:

 

 

В зонах контакта боковых поверхностей заклепки с листами происходит сжатие материалов. Давление в зоне контакта называют напряжением смятия. Считая, что эти напряжения равномерно распределены по площади смятия, запишем условие прочности

 
 

 


Здесь Асм - площадь смятия, условно равная площади проекции поверхности

контакта на плоскость, перпендикулярную действующей силе;

[σ]`см -допускаемое напряжение на смятие для менее прочного из контактирующих материалов.

Рассмотрим многорядное двухсрезное заклепочное соединение с двумя накладками.

 

 
 

 

 


Рисунок 12

 
 


,

 

 

где i - число плоскостей среза одной заклепки;

z-число заклепок.

 

Лекция 6

Лекция 7

Расчет на прочность группы предварительно затягиваемых болтов,

Деталей соединения

Затяжка болта должна обеспечить герметичность соединения или не раскрытие стыка под нагрузкой. Задача о распределение нагрузки между элементами такого соединения статически неопределима и решается с учетом деформаций этих элементов. Для решения задачи стягиваемые детали заменим эквивалентными по жесткости втулками, а внешнюю нагрузку приложим к верхнему и нижнему торцам втулок симметрично относительно оси болта.

Обозначим: Fзат - сила затяжки болта; Fвн = R/z- внешняя нагрузка соединения, приходящаяся на один болт. При затяжке болтового соединения происходит растяжение болта и сжатие стягиваемых деталей. После приложения внешней нагрузки к затянутому соединению болт дополнительно растянется на некоторую величину ∆, а величина деформации сжатия деталей уменьшится на ту же величину.

По закону Гука

 

Отношение

 

 
 

 


называется податливостью. Податливость – это деформация, вызванная единичной силой.

Жесткость (величина обратная податливости) - сила, вызывающая единичную деформацию ():

.

 

 

Податливость болта равна сумме податливостей его участков:

 

 

При определении податливости деталей полагают, что деформации от гайки и головки болта распространяются вглубь деталей по конусам, которые называются конусами влияния. Приравнивая объем этих конусов к объему цилиндра, находим диаметры заменяющих цилиндров влияния. Угол α принимают в пределах 300...450.

 
 


Рисунок 14

 

]

Если обозначить χ коэффициент внешней нагрузки (учитывает приращение нагрузки болта в долях от силы Fвн), то дополнительная нагрузка болта равна χ∙Fвн, а уменьшение затяжки стыка (1-χ)∙Fвн. Значение коэффициента χ определяют по условию равенства дополнительных деформаций болта и деталей:

 

∆=χ∙Fвн∙λб=(1-χ)∙Fвн∙λд; χ∙λбд-χ∙λд =>

 

 

Или, переходя к жесткостям, имеем:

 

;

 

Расчётная нагрузка на болт:

 
 

 


,

 

т.к. Сд > Сб, то, исходя из опытов расчётов, принимают:

 

 

Расчётная нагрузка с учётом крутящего момента затяжки:

Fб.расч.=1,3∙Fзат+χ∙Fвн

 

 

Лекция 8

Клеммовые соединения

 

 

.

 

 

Лекция 9

Лекция 10

Шлицевые соединения.

Шлицевое соединение условно можно рассматривать как многошпоночное, у которого шпонки выполнены за одноцелое с валом. Их применяют для неподвижного и подвижного соединения валов со ступицами деталей. По сравнению со шпоночными соединениями они имеют меньшие радиальные габариты, высокую несущую способность, взаимозаменяемы и обеспечивают хорошее центрирование деталей. По форме поперечного сечения различают три типа соединений: прямобочные, эвольвентные и треугольные.

 
 

 

 


Основные типы зубчатых соединений:

а — прямобочное; б — эвольвентное; в — треугольное

 

Рисунок 27

 

Соединения с прямобочными зубьями наиболее распространены в машиностроении. В зависимости от числа зубьев и их высоты стандартом предусмотрены три серии соединений для валов с диаметром от 23 до 125 мм. Соединения с треугольными зубьями применяют преимущественно в приборостроении при малых радиальных габаритах. Условие прочности по допускаемым напряжениям имеет вид

 

Здесь dm- средний диаметр соединения;

z - число зубьев;

h- высота зуба;

l - длина поверхности контакта зубьев;

ψ = 0,7- 0,8 - коэффициент, учитывающий концентрацию контактных давлений на краях соединения.

 

 

МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ

Лекция 11

Назначение

Согласование режима работы двигателя с режимом работы исполнительного органа машины осуществляется с помощью передач. Необходимость введения передачи как промежуточного механизма между двигателем и исполнительным органом машины связана с решением различных задач:

- требуемые скорости движения рабочих органов машины, как правило, не совпадают с оптимальными скоростями двигателя;

- для большинства технологических и транспортных машин необходима возможность регулирования скорости;

- двигатели обычно выполняют для равномерного вращательного движения, а в машинах иногда оказывается необходимым поступательное движение;

- необходимостью привода нескольких исполнительных органов от одного двигателя.

В машиностроении применяют механические, электрические, гидравлические и пневматические передачи. Все механические передачи разделяют на две основные группы: передачи, основанные на использовании трения (ременные, фрикционные); передачи, основанные на использовании зацепления (зубчатые, червячные, цепные, винтовые).

Если передаточный механизм предназначен для снижения угловой скорости и соответственно для увеличения крутящего момента, то его называют редуктором. Передаточный механизм, повышающий угловую скорость называют мультипликатором.

Передачи выполняют с постоянным или регулируемым передаточным отношением. Регулирование передаточного отношения может быть ступенчатым или бесступенчатым.

Ступенчатое регулирование выполняют в коробках скоростей с зубчатыми колесами, в ременных передачах со ступенчатыми шкивами и т.п. Бесступенчатое регулирование - с помощью фрикционных или цепных вариаторов. Механические передачи ступенчатого регулирования с зубчатыми колесами обладают высокой работоспособностью и поэтому широко применяются в машиностроении. Механические передачи бесступенчатого регулирования обладают меньшей нагрузочной способностью и имеют меньшее распространение. Конкурентами этих передач являются гидравлические передачи, которые позволяют передавать большие мощности и иметь сравнительно простую систему автоматического регулирования.

 

 

Вращательного движения

К основным характеристикам передач можно отнести следующие:

- мощность на входе и на выходе, N [1 bt=1H*m/c];

- быстроходность, которая выражается частотой вращения на входе и на выходе, n [об/мин] или угловой скоростью ω [рад/с].

 

Дополнительными характеристиками являются:

- механический коэффициент полезного действия

 

- передаточное отношение

       
   
 

 


- крутящий момент или,

 

где N – мощность в киловаттах,

w - угловая скорость в рад/с,

n – частота вращения в об/мин,

T – крутящий (вращающий) момент в Нм.

 

Лекция 12

Нагрузка

Силы взаимодействия между зубьями принято определять в полюсе зацепления. Распределенную по контактной линии нагрузку в зацеплении заменяют равнодействующей Fn, которая направлена по линии зацепления. Силами трения пренебрегают, т.к. они малы. Для удобства при расчетах равнодействующую силу раскладывают на составляющие:

- в цилиндрических прямозубых (рисунок 28а) и шевронных (рисунок 28б) передачах на окружную силу Ft и радиальную силу Fr;

- в косозубой (рисунок 28в) передаче на окружную, радиальную и осевую Fa силы. Осевая сила Fa, дополнительно нагружающая опоры валов, является недостатком косозубых передач.

 

 

 
 

 


Fr=Ft∙tg∙αw

 

 
 

 


а)

 

 

 


Fr=Ft∙tg∙αw

 

 
 

 


б)

 

 

           
 
   
 
   
 
   
 

 


в)

 

 

Рисунок 28

 

В зубчатых передачах введено понятие удельной окружной силы

 
 


,

 

где b - ширина колеса.

При работе зубчатой передачи вследствие возможных неточностей изготовления и сборки, в зацеплении возникают дополнительные динамические нагрузки. Кроме того, деформация валов и зубчатых колес приводит к неравномерному распределению нагрузки по длине зуба, вызывая ее концентрацию. Поэтому при расчетах берут расчетную удельную нагрузку:

 

(контактная выносливость); (изгиб).

 

Здесь WHt, WFt - расчетная удельная окружная сила при расчетах передачи

на контактную выносливость и изгибную прочность;

K, Kk - коэффициенты концентрации нагрузки, учитывающие неравномерность распределения нагрузки по длине зуба;

KHv, KHv - коэффициенты, учитывающие наличие динамических нагрузок.

 

Лекция 13

Проектировочные расчеты

При проектировочном расчёте закрытых передач (из условия контактной выносливости) необходимо определить размеры передачи по основным характеристикам передачи: T1, T2, ω1 и ω2. с этой целью формула решается относительно межосевого расстояния αW. Межосевое расстояние запишем через диаметры:

 

Вводим коэффициент ширины зуба

Запишем удельную окружную силу

 

.

 

Подставляем в формулу и обе стороны возводим в квадрат.

 

 

 

Обозначим

,

 

Ка - коэффициент межосевого расстояния.

При стальных колёсах Ка=49,5 МПа. Тогда формула для проектировочного расчёта примет вид:

 

Размеры закрытых передач определяют из расчёта на контактную прочность, а затем зубья проверяются на изгибную прочность.

Открытые передачи рассчитываются исходя из изгибной выносливости. Решение сводится к определению модуля передачи.

С целью получения формулы для проектировочного расчёта открытых передач выразим

при x1=0; x2=0; dw1=d1=m∙z1; dw2=d2=m∙z2.

 

Вводим коэффициент ширины зубчатого венца относительно диаметра и подставляем в формулу:

 

Принимая , получаем

 

 

Далее модуль зацепления необходимо округлить до стандартной величины.

 

Лекция 14

Лекция 15

Недостатки, классификация

Конические колёса применяют для передачи вращения между валами с пересекающимися осями. Наибольшее распространение имеют передачи, когда оси валов пересекаются под углом δ12=90° (такая передача называется ортогональной). Конические колёса выполняют с прямыми, тангенциальными и круговыми зубьями.

 

 
 

 


Рисунок 37

 

Вместоначальных и делительных цилиндров цилиндрических колёс в конических колёсах вводят понятия начальных и делительных конусов, кото­рые, как правило, совпадают. На начальных поверхностях скорости относительного скольжения зубьев равны нулю.

 

Лекция 16

Усилия в зацеплении зубьев

Сила взаимодействия между витками резьбы червяка и зубьями червячного колеса может быть разложена на три взаимно перпендикулярные составляющие: окружную, осевую и радиальную сил. На рисунке показаны эти составляющие для витка резьбы червяка.

 
 

 


Рисунок 46

 

Окружная сила червяка Ft1, равная осевой силе колеса Fa2:

 

Окружная сила колеса Ft2, равная осевой силе червяка Fa1:

 

Радиальная сила:

 

Fr1=Fr2=Ft2·tgα.

 

Нормальная (полная) нагрузка:

.

 

Напряжениям

Так как червяки изготавливают из более прочного материала, чем венцы червячных колес, то на прочность проверяют только зубья колеса. Основные причины выхода из строя червячных передач - поверхностное разрушение, заедание и износ зубьев. Усталостное выкрашивание рабочих поверхностей зубьев происходит в передачах с колесами, изготовленными из твердых бронз. Поломка зубьев главным образом происходит после их износа. В связи с тем, что поверхностное разрушение зубьев зависит от контактных напряжений, а поломка -от напряжений изгиба, червячные колеса рассчитывают на прочность по контактным напряжениям и напряжениям изгиба.

Особенности расчета на контактную прочность.

По аналогии с расчетом зубчатой передачи наибольшее контактное напряжение определяют по формуле Герца:

 

 

При этом ρпр2, т.к. ρ1=∞ (витки червяка имеют профиль прямобочной рейки). Для бронзы Е =0,98∙105 МПа, а Епр = 1,33 . 105 Мпа.

После преобразования исходной формулы получают формулу проверочного расчета червячной передачи:

 

 

Решив уравнение относительно aw,получают формулу проектировочного расчета:

 

 

Коэффициент нагрузки КH принимают в пределах 1,1...1,3.

Допускаемые контактные напряжения для безоловянистых бронз и чугунов выбирают из условия сопротивления заеданию в зависимости от скорости скольжения:

[σ]2=300-25∙Vs (бронза); [σ]2=180-45∙Vs

 

Для оловянистых бронз допускаемое контактное напряжение выбирают из условия сопротивления материала поверхностной усталости:

 

 

Особенности расчета на изгибную прочность.

Этот расчет производится как проверочный. Вывод формулы аналогичен расчету зубьев цилиндрических косозубых колес. При этом в формулу вводят следующие поправки и упрощения. Зубья червячного колеса вследствие дуговой формы на 40 % прочней зубьев цилиндрического косозубого колеса. Особенности формы зуба червячных колес учитывает коэффициент формы зуба -УР. Причем он выбирается с учетом эквивалентного числа зубьев колеса:

,

 

 

Допускаемые напряжения изгиба для всех видов бронз:

 

 

Тепловой расчет

В червячных передачах из-за повышенного трения скольжения в зацеплении происходит выделение большого количества теплоты, которая нагревает масло. А нагрев масла выше 95°С приводит к потере им защитной способности и к опасности заедания. Поэтому отвод теплоты в окружающую среду должен быть достаточным для предотвращения перегрева масла. Количество теплоты, выделяющейся в передаче в секунду, или тепловая мощность:

 

Количество теплоты, отводимой наружной поверхностью корпуса в секунду:

,

 

где А-площадь поверхности охлаждения; tp- температура масла; t0 - температура воздуха;

К - коэффициент теплоотдачи;

К=9...17Вт/(м2∙град).

Если естественного охлаждения недостаточно , то необходимо увеличить поверхность охлаждения применяя охлаждающие ребра или применить искусственное охлаждение.

Лекция 17

Геометрия ременных передач

а) При проектировочном расчете плоскоременной передачи диаметр меньшего шкива рекомендуется приближенно определять по формуле М.А.Саверина:

б) Минимальное значение диаметра меньшего шкива клиноременной передачи определяют по таблице в зависимости от профиля ремня.

Межосевое расстояние ременной передачи рекомендуется:

- для плоскоременных передач

 

-для клиноременных передач принимают

 

 

Угол между ветвями ремня определяет­ся из вспомогательного треугольника

 

отсюда в радианах

 

 
 

 


Рисунок 50

 

Угол обхвата на малом шкиве в градусах:

 

 

Для плоскоременной передачи рекомендуют брать минимальный угол обхвата [α]=150º, для клиноременной – [α]=120º

Расчётная длина ремня L равна сумме длин прямолинейных участков и дуг обхвата шкивов.

 

Здесь косинус разложен в степенной ряд и взяты два первых члена этого ряда (что достаточно для практической точности расчетов)

 

 

Межосевое расстояние при окончательно установленной длине ремня

 

 

При расчётах длин ремней и межосевых расстояний клиноременных передач оперируют расчётными диаметрами шкивов по нейтральному слою ремня.

 

Кинематика ременных передач

Окружные скорости шкивов при работе передачи

 

 

За счет упругого проскальзывания ремня V1>V2

Относительная потеря скорости на шкивах характеризуется

коэффициентом скольжения

тогда V2=V1∙(1-ε)

 

Передаточное отношение

 

При нормальном режиме работы обычно d= 0,01 - 0,02.

 

Ременных передач

Начальное натяжение ремня Fo выбирают по условию, при котором ремень мог бы передавать полезную нагрузку, сохраняя натяжение достаточно длительное время, не получая большой вытяжки, и имел бы удовлетворительную долговечность. До передачи вращения ветви испытывают одинаковое начальное натяжение Fo. Напряжение от предварительного натяжения равно s0=1,8 МПа для плоских ремней и s0=1,2 МПа - для клиновых.

Рассмотрим передачу полезной нагрузки Ft

Соотношение натяжений ведущего F1 и ведомого F2 ветвей при работе без учета центробежных сил определяют по известному уравнению Л. Эйлера, выведенному для нерастяжимой нити.

где е - основание натуральных логарифмов; γ- угол скольжения; приближенно равным 0,7 угла обхвата α.

 

       
   
 

 

 


Рисунок 51

 

Соответствующие напряжения растяжения в ведущей и ведомой ветвях:

 

и

 

Полезное напряжение

 

В то же время

=>

При изгибе ремня толщиной δ на шкиве диаметра D относительные удлинения наружных волокон равны δ/D.

Напряжение изгиба в предположенном постоянстве модуля упругости

 

При вращении шкивов под действием центробежных сил ремень испытывает дополнительные напряжения растяжения

 

σц=ρ∙V2,

 

где V1 м/с; ρ – кг/м3 – плотность

(для прорезиненных ρ=1100…1200 кг/м3; кожа ρ=1000÷1100 кг/м3)

 

 

 
 

 


Рисунок 52

 

 

Все силы проецируем на ось, перпендикулярную оси С'

 

 

Наибольшее суммарное напряжение в поперечном сечении ремня в месте его набегания на малый шкив (рисунок 53, на котором изображена эпюра суммарных напряжений в работающем ремне).

 

 

 
 

 


Рисунок 53

Основными критериями работоспособности ременных передач являются:

- тяговая способность ремня - это способность передавать определенную нагрузку без пробуксовывания ремня;

- долговечность ремня.

 

Лекция 18

На тяговую способность

Расчет основан на кривых скольжения, которые получают экспериментальным путем.

По оси ординат откладывают коэффициент скольжения e и к.п.д. передачи, а по оси абсцисс графика - нагрузку, выраженную через коэффициент тяги:

 

 
 

 


Рисунок 54

При построении кривых постепенно повышают полезную нагрузку Ft при постоянном натяжении F1 + F2 = 2Fo, замеряя при этом скольжение и к.п.д. передачи.

При возрастании коэффициента тяги от 0 до критического значения φ0 наблюдается только упругое скольжение. В зоне φ0 - φmax наблюдается как упругое скольжение ремня, так и частичное буксование. Рабочую нагрузку желательно выбирать ближе к φ0 и слева от него. Для разных материалов ремней φ0 в пределах 0,4... 0,6.

На основе кривых скольжения для плоскоременной передачи со следующими параметрами: α12=180º; V=10м/с определено допускаемое полезное напряжение [st]0 и установлена экспериментальная зависимость для ее нахождения.

(полезное допускаемое напряжение для идеальной передачи, S- запас тяговой способности по буксованию S=l,2... 1,4)

Поскольку реальные передачи могут иметь другие параметры, то полезное допускаемое напряжение для реальной (конкретной) передачи определяют при помощи поправочных коэффициентов, учитывающих геометрию, кинематику и режим работы проектируемой передачи:

 

 

Со - учитывает условия натяжения и расположения передачи

Сα - 1-0,003∙(180°-α0) - учитывает угол обхвата α

Cv - 1,04 - 0,0004∙V2 - учитывает скорость ремня

Ср - коэффициент режима работы (1- при одной смене.; 2 смены=0,87; 3 смены=0,72)

 

Полезную силу Ft и мощность N, передаваемые ремнем можно определить, если известно сечение:

[Ft]=A∙[σt]; [N]=[Ft]∙V



Поделиться:


Последнее изменение этой страницы: 2017-01-19; просмотров: 128; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.118.99 (0.397 с.)