Введение в компьютерные сети 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Введение в компьютерные сети



Введение в компьютерные сети

Компьютерная сеть – это набор распределенных интеллектуальных машин, связанных между собой и совместно использующих свои данные и ус-луги. То есть для работы в компьютерной сети необходимы данные или услуги, которыми одни члены сети хотят поделиться с другими. А также средства пере-дачи данных и услуг.

В процессе развития сетевых технологий было выделено три вычисли-тельные системы:

- централизованные вычисления

- распределенные вычисления

- коллективные вычисления.

По занимаемому пространству сети подразделяют на:

- локальные сети (LAN – local area network)

- городские сети (MAN – metropolian area network)

- глобальные сети (WAN – wide area network).

Чаще всего используются классификации сетей LAN и WAN.

Локальные сети имеют относительно малый размер. Как правило такие сети используют только одну среду для передачи данных, например один вид кабеля. Размер таких сетей не превышает 10 километров и обычно такие сети заключены в пределах одного здания.

К примеру, в начале 80-х годов типичная локальная сеть состояла не бо-лее чем из 30 компьютеров а длина одного сегмента кабеля не превышала 200 м.

Городские сети занимают уже пространство от нескольких десятков до 100 километров и, как следует из названия, находятся в пределах одного насе-ленного пункта. В таких сетях используется уже различное оборудование и раз-личные среды передачи данных, что связано с большим удалением структур се-ти друг от друга.

Глобальные сети – это сети, которые уже не помещаются в размеры го-родских сетей. Глобальные сети как правило связывают локальные сети, кото-рые могут находиться на очень большом расстоянии, например на разных кон-тинентах.

Глобальные сети в свою очередь подразделяются на сети предприятий (Enterprise) и действительно глобальные сети (Global). Сети предприятий при-надлежат какой-то одной организации, и связывают филиалы или удаленные подразделения. Глобальные сети пересекают государственные границы и обыч-но связывают множество организаций между собой.

С каждым годом все более прослеживается тенденция объединения всех компьютерных сетей в одну информационную супермагистраль, но на этом пу-ти предстоит решить еще множество проблем.

Если рассмотреть структуру компьютерной сети, то в ней можно выде-лить три базовых элемента:

- сетевые средства и службы

- носители для передачи данных

- сетевые протоколы.

 

 

Транспортные протоколы

. Существует множество классов протоколов транспортного уровня, начиная от протоколов, предоставляющих только основные транспортные функции (например, функции передачи данных без подтверждения приема), и заканчивая протоколами, которые гарантируют доставку в пункт назначения нескольких пакетов данных в надлежащей последовательности, мультиплексируют несколько потоков данных, обеспечивают механизм управления потоками данных и гарантируют достоверность принятых данных. Например, UDP ограничивается контролем целостности данных в рамках одной датаграммы, и не исключает возможности потери пакета целиком, или дублирования пакетов, нарушение порядка получения пакетов данных; TCP обеспечивает надёжную непрерывную передачу данных, исключающую потерю данных или нарушение порядка их поступления или дублирования, может перераспределять данные, разбивая большие порции данных на фрагменты и наоборот склеивая фрагменты в один пакет.

Защита от ошибок.Модемы

LAPM (Link Access Procedure for Modems) - протокол защиты от ошибок для модемов основан на стандартной процедуре HDLC (Стандарт ISO 4335) и приведён в Рекомендации V.42. Протокол имеет следующие основные характеристики:

взаимодействие в режиме без исправления ошибок с модемами серии V., имеющими асинхронно-синхронное преобразование по Рекомендации V.14, но не реализующими функции защиты от ошибок;

обнаружение ошибок с помощью циклического кода;

исправление ошибок путём автоматического запроса повторения данных, принятых с ошибками (метод ARQ);

синхроннаая передача стартстопных данных;

процедура начального вхождения в связь

проведение начального вхождения в связь для определения типа протокола защиты от ошибок, используемого в дальнем модеме;

установка режима работы с защитой от ошибок или без неё в процессе вхождение в связь;

координация согласования необходимых параметров и факультативных процедур;

стартстопно-синхронное преобразование данных.

Моде́м (акроним, составленный из слов модулятор и демодулятор) — устройство, применяющееся в системах связи для физического сопряжения информационного сигнала со средой его распространения, где он не может существовать без адаптации, и выполняющее функцию модуляции при передаче сигнала и демодуляции при приёме сигнала из канала связи (чаще всего в речевом диапазоне).

Модулятор в модеме осуществляет модуляцию несущего сигнала, то есть изменяет его характеристики в соответствии с изменениями входного информационного сигнала, демодулятор — осуществляет обратный процесс. Модем выполняет функцию оконечного оборудования линии связи. Само формирование данных для передачи и обработки принимаемых данных осуществляет т. н. терминальное оборудование (в его роли может выступать и персональный компьютер).

Модемы широко применяются для связи компьютеров через телефонную сеть (телефонный модем) или кабельную сеть (кабельный модем). Ранее модемы применялись также в сотовых телефонах (пока не были вытеснены цифровыми способами передачи данных).

Введение в комьютерные сети

Понятие компьютерной сети.

Компьютерные сети – это системы компьютеров, объединенных каналами передачи данных, обеспечивающие эффективное предоставление различных информационно-вычислительных услуг пользователям посредством реализации удобного и надежного доступа к ресурсам сети.

Информационные системы, использующие возможности компьютерных сетей, обеспечивают выполнение следующих задач:

· Хранение и обработка данных

· Организация доступа пользователей к данным

· Передача данных и результатов обработки пользователям

Эффективность решения перечисленных задач обеспечивается:

· Дистанционным доступом пользователей к аппаратным, программным и информационным ресурсам

· Высокой надежностью системы

· возможностью оперативного перераспределения нагрузки

· специализацией отдельных узлов сети для решения определенного класса задач

· решением сложных задач совместными усилиями нескольких узлов сети

· возможностью осуществления оперативного контроля всех узлов сети

Виды компьютерных сетей.

Компьютерные сети, в зависимости от охватываемой территории, подразделяются на:

· локальные (ЛВС,LAN-Local Area Network)

· региональные (РВС,MAN – Metropolitan Area Network)

· глобальные(ГВС, WAN – Wide Area Network

В локальной сети абоненты находятся на небольшом (до 10-15 км) расстоянии. К ЛВС относятся сети отдельных предприятий, фирм, банков, офисов и т.д.

РВС связывают абонентов города, района, области.

Глобальные сети соединяют абонентов, удаленных друг от друга на значительное расстояние, расположенных в разных странах, или разных континентах.

По признакам организации передачи данных компьютерные сети можно разделить на две группы:

* последовательные;

* широковещательные.

В последовательных сетях передача данных осуществляется последовательно от одного узла к другому. Каждый узел ретранслирует принятые данные дальше. Практически все виды сетей относятся к этому типу. В широковещательных сетях в конкретный момент времени передачу может вести только один узел, остальные узлы могут только принимать информацию.

Топологии компьютерных сетей

Топология представляет физическое расположение сетевых компонентов (компьютеров, кабелей и др.). Выбором топологии определяется состав сетевого оборудования, возможности расширения сети, способ управления сетью.

Существуют следующие топологии компьютерных сетей:

* шинные (линейные, bus);

* кольцевые (петлевые, ring);

* радиальные (звездообразные, star);

* смешанные (гибридные).

Практически все сети строятся на основе трех базовых топологий: топологии «шина», «звезда» и «кольцо». Базовые топологии достаточно просты, однако на практике часто встречаются довольно сложные комбинации, сочетающие, свойства и характеристики нескольких топологий.

В топологии «шина», или «линейная шина» (linear bus), используется один кабель, именуемый магистралью или сегментом, к которому подключены все компьютеры сети. Эта топология является наиболее простой и распространенной реализацией сети.

Так как данные в сеть передаются лишь одним компьютером, производительность сети зависит от количества компьютеров, подключенных к шине. Чем больше компьютеров, тем медленнее сеть.

9 примеры глобальных сетей

Глобальные сети (Wide Area Networks, WAN), которые также называют территориальными компьютерными сетями, служат для того, чтобы предоставлять свои сервисы большому количеству конечных абонентов, разбросанных по большой территории - в пределах области, региона, страны, континента или всего земного шара. Ввиду большой протяженности каналов связи построение глобальной сети требует очень больших затрат, в которые входит стоимость кабелей и работ по их прокладке, затраты на коммутационное оборудование и промежуточную усилительную аппаратуру, обеспечивающую необходимую полосу пропускания канала, а также эксплуатационные затраты на постоянное поддержание в работоспособном состоянии разбросанной по большой территории аппаратуры сети.

нформация в глобальной сети передается от узла к узлу через ближайший свободный в нужном направлении, причем отдельные узлы могут не иметь между собой связи. Если какой-то узел не работает, то информация посылается в обход него, поэтому, доставка информации потребителю всегда занимает некоторое время.

Примером глобальной сети может служить система продажи железнодорожных или авиабилетов.

Стандарты передачи данных

Ethernet

На сегодняшний день Ethernet является самым распространенным стандартом локальных сетей. В зависимости от типа физической среды передачи данных стандарт Ethernet имеет множество различных модификаций. Первые версии использовали шинную топологию и работали по коаксиальному кабелю (50 Ом) - 10Base5 (до 500 м) и 10Base-2 (до 185 м). Все последующие версии сети Ethernet имеют топологию звезды и работают по витым парам (100 Ом) или оптическим волокнам. Версии 10Base-T (10 Мбит/с) и 100Base-T4 используют кабели категории 3 (2 и 4 пары, соответственно), версия 100BASE-TX (100Мбит/с) использует две пары категории 5. В настоящее время все большую применимость находит сеть 1000Base-T (1 Гбит/с), которая использует четыре пары улучшенной категории 5, категории 6 и выше.

ATM

Стандарт FDDI

FDDI — оптоволоконный интерфейс разделяемых данных. В нем так же, как и в Token Ring, используется схема передачи маркера. Отметим, что в FDDI маркер посылается сразу же за передачей пакета в сеть, тогда как в Token Ring маркер генерируется только после возвращения к рабочей станции посланного ей сообщения. Кроме того, FDDI использует два независимых кольца с противоположной ориентацией для передачи данных (одно из них является резервным). По сравнению с Token Ring время обладания маркера ограничено. В качестве физической среды в FDDI может использоваться только оптоволоконный кабель. Максимальная скорость передачи данных по сети FDDI равна 100 Мбит/с. Оборудование для сетей FDDI в основном производят фирмы DEC, Cisco, 3COM.

Стандарт Token Ring

В ЛВС с передачей маркера сообщения передаются последовательно от одного узла к другому вне зависимости от того, какую топологию имеет сеть — кольцевую или звездообразную. Каждый узел сети получает пакет от соседнего узла. Если данный узел не является адресатом, то он передает тот же самый пакет следующему узлу. Передаваемый пакет может содержать либо данные, направляемые от одного узла другому, либо маркер. Маркер — это короткое сообщение, являющееся признаком незанятости сети. В том случае, когда рабочей станции необходимо передать сообщение, ее сетевой адаптер дожидается поступления маркера, а затем формирует пакет, содержащий данные, и передает этот пакет в сеть. Пакет распространяется по ЛВС от одного сетевого адаптера к другому до тех пор, пока не дойдет до компьютера-адресата, который произведет в нем стандартные изменения. Эти изменения являются подтверждением того, что данные достигли адресата. После этого пакет продолжает движение дальше по ЛВС, пока не возвратится в тот узел, который его сформировал. Узел-источник убеждается в правильности передачи пакета и возвращает в сеть маркер. Важно отметить, что в ЛВС с передачей маркера функционирование сети организовано так, что коллизий возникнуть не может. Скорость передачи данных сетей Token Ring достигает 16 Мбит/с. Оборудование для сетей Token Ring производят многие фирмы, в том числе IBM, 3COM.

Каналы передачи данных

 

Преимуществами данного подхода является сокращение количества специалистов пользователя на местах, единое управление сетью, оптимальность сервисной поддержки сети в ходе её эксплуатации и развития и прочие.

 

Корпоративным пользователям компания предоставляет услуги по организации виртуальных частных сетей второго уровня (VPN Layer 2). При необходимости возможна организация каналов точка-точка или точка-многоточка. В качестве протоколов канального уровня используются протоколы Frame-Relay или Ethernet 802.1q.

 

При такой организации каналов пользователи имеют возможность самостоятельно организовывать свою корпоративную IP-сеть (VPN Layer 3) путем наложения ее на предоставленные каналы второго уровня.

 

Для организации каналов передачи данных компания рекомендует использование оборудования производителя Cisco Systems (при подключении по протоколу Frame-Relay оборудование должно быть оснащено интерфейсами V.35 или G.703/G.704; при подключении по протоколу 802.1q - интерфейсами 10/100/1000 Base-TX/FX). Компания готова оказать содействие по выбору и приобретению данного оборудования, с последующей его первичной настройкой.

 

В качестве физических линий связи на "последней миле" могут быть использованы оптические линии, медные линии с использованием xDSL-протоколов, каналы первичных сетей PDH/SDH.

Организация передачи данных

 

В ЭВМ используются два основных способа организации передачи данных между памятью и периферийными устройствами: программно-управляемая передача и прямой доступ к памяти (ПДП).

 

Программно-управляемая передача данных осуществляется при непосредственном участии и под управлением процессора. Например, при пересылке блока данных из периферийного устройства в оперативную память процессор должен выполнить следующую последовательность шагов:

 

сформировать начальный адрес области обмена ОП;

 

занести длину передаваемого массива данных в один из внутренних регистров, который будет играть роль счетчика;

 

выдать команду чтения информации из УВВ; при этом на шину адреса из МП выдается адрес УВВ, на шину управления - сигнал чтения данных из УВВ, а считанные данные заносятся во внутренний регистр МП;

 

выдать команду записи информации в ОП; при этом на шину адреса из МП выдается адрес ячейки оперативной памяти, на шину управления - сигнал записи данных в ОП, а на шину данных выставляются данные из регистра МП, в который они были помещены при чтении из УВВ;

 

модифицировать регистр, содержащий адрес оперативной памяти;

 

уменьшить счетчик длины массива на длину переданных данных;

 

если переданы не все данные, то повторить шаги 3-6, в противном случае закончить обмен.

 

Как видно, программно-управляемый обмен ведет к нерациональному использованию мощности микропроцессора, который вынужден выполнять большое количество относительно простых операций, приостанавливая работу над основной программой. При этом действия, связанные с обращением к оперативной памяти и к периферийному устройству, обычно требуют удлиненного цикла работы микропроцессора из-за их более медленной по сравнению с микропроцессором работы, что приводит к еще более существенным потерям производительности ЭВМ.

 

Альтернативой программно-управляемому обмену служит прямой доступ к памяти - способ быстродействующего подключения внешнего устройства, при котором оно обращается к оперативной памяти, не прерывая работы процессора. Такой обмен происходит под управлением отдельного устройства - контроллера прямого доступа к памяти (КПДП).

 

Перед началом работы контроллер ПДП необходимо инициализировать: занести начальный адрес области ОП, с которой производится обмен, и длину передаваемого массива данных. В дальнейшем по сигналу запроса прямого доступа контроллер фактически выполняет все те действия, которые обеспечивал микропроцессор при программно-управляемой передаче.

 

Последовательность действий КПДП при запросе на прямой доступ к памяти со стороны устройства ввода-вывода следующая:

 

Принять запрос на ПДП (сигнал DRQ) от УВВ.

 

Сформировать запрос к МП на захват шин (сигнал HRQ).

 

Принять сигнал от МП (HLDA), подтверждающий факт перевода микропроцессором своих шин в третье состояние.

 

Сформировать сигнал, сообщающий устройству ввода-вывода о начале выполнения циклов прямого доступа к памяти (DACK).

 

Сформировать на шине адреса компьютера адрес ячейки памяти, предназначенной для обмена.

 

Выработать сигналы, обеспечивающие управление обменом (IOR, MW для передачи данных из УВВ в оперативную память и IOW, MR для передачи данных из оперативной памяти в УВВ).

 

Уменьшить значение в счетчике данных на длину переданных данных.

 

Проверить условие окончания сеанса прямого доступа (обнуление счетчика данных или снятие сигнала запроса на ПДП). Если условие окончания не выполнено, то изменить адрес в регистре текущего адреса на длину переданных данных и повторить шаги 5-8.

 

^ Прямой доступ к памяти позволяет осуществлять параллельно во времени выполнение процессором программы и обмен данными между периферийным устройством и оперативной памятью.

 

Обычно программно-управляемый обмен используется в ЭВМ для операций ввода-вывода отдельных байт (слов), которые выполняются быстрее, чем при ПДП, так как исключаются потери времени на инициализацию контроллера ПДП, а в качестве основного способа осуществления операций ввода-вывода используют ПДП. Например, в стандартной конфигурации персональной ЭВМ обмен между накопителями на магнитных дисках и оперативной памятью происходит в режиме прямого доступа.

Протоколы теледоступа.

 

Специфика телекоммуникаций проявляется прежде всего в прикладных протоколах. Среди них наиболее известны протоколы, связанные с Internet, и протоколы ISO-IP (ISO 8473), относящиеся к семиуровневой модели открытых систем. К прикладным протоколам Internet относятся следующие:

 

Telnet - протокол эмуляции терминала, или, другими словами, протокол реализации дистанционного управления используется для подключения клиента к серверу при их размещении на разных компьютерах, пользователь через свой терминал имеет доступ к компьютеру-серверу;

 

FTP - протокол файлового обмена (реализуется режим удаленного узла), клиент может запрашивать и получать файлы с сервера, адрес которого указан в запросе;

 

HTTP (Hypertext Transmission Protocol) - протокол для связи WWW-серверов и WWW-клиентов;

 

NFS - сетевая файловая система, обеспечивающая доступ к файлам всех UNIX-машин локальной сети, т.е. файловые системы узлов выглядят для пользователя, как единая файловая система;

 

SMTP, IMAP, POP3 - протоколы электронной почты.

Указанные протоколы реализуются с помощью соответствующего программного обеспечения. Для Telnet, FTP, SMTP на серверной стороне выделены фиксированные номера протокольных портов.

 

В семиуровневой модели ISO используются аналогичные протоколы. Так, протокол VT соответствует протоколу Telnet, FTAM - FTP, MOTIS - SMTP, CMIP - SNMP, протокол RDA (Remote Database Access) предназначен для доступа к удаленным базам данных.

14.15.16.17.18. Табулирование функции — это вычисление значений функции при изменении аргумента от некоторого начального значения до некоторого конечного значения с определённым шагом. Именно так составляются таблицы значений функций, отсюда и название — табулирование. Необходимость в табулировании возникает при решении достаточно широкого круга задач. Например, при численном решении нелинейных уравнений f(x) = 0, путём табулирования можно отделить (локализовать) корни уравнения, т.е. найти такие отрезки, на концах которых, функция имеет разные знаки. С помощью табулирования можно (хотя и очень грубо) найти минимум или максимум функции. Иногда случается так, что функция не имеет аналитического представления, а её значения получаются в результате вычислений, что часто бывает при компьютерном моделировании различных процессов. Если такая функция будет использоваться в последующих расчётах (например, она должна быть проинтегрирована или продифференцирована и т.п.), то часто поступают следующим образом: вычисляют значения функции в нужном интервале изменения аргумента, т.е. составляют таблицу (табулируют), а затем по этой таблице строят каким-либо образом другую функцию, заданную аналитическим выражением (формулой). Необходимость в табулировании возникает также при построении графиков функции на экране компьютера.

Экстре́мум (лат. extremum — крайний) в математике — максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум, называется точкой экстремума. Соответственно, если достигается минимум — точка экстремума называется точкой минимума, а если максимум — точкой максимума. В математическом анализе выделяют также понятие локальный экстремум (соответственно минимум или максимум).

введение в компьютерные сети

Компьютерная сеть – это набор распределенных интеллектуальных машин, связанных между собой и совместно использующих свои данные и ус-луги. То есть для работы в компьютерной сети необходимы данные или услуги, которыми одни члены сети хотят поделиться с другими. А также средства пере-дачи данных и услуг.

В процессе развития сетевых технологий было выделено три вычисли-тельные системы:

- централизованные вычисления

- распределенные вычисления

- коллективные вычисления.

По занимаемому пространству сети подразделяют на:

- локальные сети (LAN – local area network)

- городские сети (MAN – metropolian area network)

- глобальные сети (WAN – wide area network).

Чаще всего используются классификации сетей LAN и WAN.

Локальные сети имеют относительно малый размер. Как правило такие сети используют только одну среду для передачи данных, например один вид кабеля. Размер таких сетей не превышает 10 километров и обычно такие сети заключены в пределах одного здания.

К примеру, в начале 80-х годов типичная локальная сеть состояла не бо-лее чем из 30 компьютеров а длина одного сегмента кабеля не превышала 200 м.

Городские сети занимают уже пространство от нескольких десятков до 100 километров и, как следует из названия, находятся в пределах одного насе-ленного пункта. В таких сетях используется уже различное оборудование и раз-личные среды передачи данных, что связано с большим удалением структур се-ти друг от друга.

Глобальные сети – это сети, которые уже не помещаются в размеры го-родских сетей. Глобальные сети как правило связывают локальные сети, кото-рые могут находиться на очень большом расстоянии, например на разных кон-тинентах.

Глобальные сети в свою очередь подразделяются на сети предприятий (Enterprise) и действительно глобальные сети (Global). Сети предприятий при-надлежат какой-то одной организации, и связывают филиалы или удаленные подразделения. Глобальные сети пересекают государственные границы и обыч-но связывают множество организаций между собой.

С каждым годом все более прослеживается тенденция объединения всех компьютерных сетей в одну информационную супермагистраль, но на этом пу-ти предстоит решить еще множество проблем.

Если рассмотреть структуру компьютерной сети, то в ней можно выде-лить три базовых элемента:

- сетевые средства и службы

- носители для передачи данных

- сетевые протоколы.

 

 



Поделиться:


Последнее изменение этой страницы: 2016-12-17; просмотров: 637; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.134.104.173 (0.073 с.)