Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Дифракция Френеля и Фраунгофера. Метод зон Френеля, усиление света С помощью зонной пластинки.

Поиск

Дифракция Фраунгофера — случай дифракции, при котором дифракционная картина наблюдается на значительном расстоянии от отверстия или преграды. Расстояние должно быть таким, чтобы можно было пренебречь в выражении для разности фаз членами порядка, что сильно упрощает теоретическое рассмотрение явления. Здесь — расстояние от отверстия или преграды до плоскости наблюдения, — длина волны излучения, а — радиальная координата рассматриваемой точки в плоскости наблюдения в полярной системе координат. Иными словами, дифракция Фраунгофера наблюдается тогда, когда число зон Френеля, при этом приходящие в точку волны являются практически плоскими. При наблюдении данного вида дифракции изображение объекта не искажается и меняет только размер и положение в пространстве. В противоположность этому, при дифракции Френеля изображение меняет также свою форму и существенно искажается.

Дифракционные явления Фраунгофера имеют большое практическое значение, лежат в основе принципа действия многих спектральных приборов, в частности, дифракционных решёток. В последнем случае для наблюдения светового поля «в бесконечности» используются линзы или вогнутые дифракционные решетки (соответственно, экран ставится в фокальной плоскости).

Дифра́кция Френе́ля — дифракционная картина, которая наблюдается на небольшом расстоянии от препятствия, по условиям, когда основной вклад в интерференционную картину дают границы экрана.

На рисунке схематично изображён (слева) непрозрачный экран с круглым отверстием (апертура), слева от которого расположен источник света. Изображение фиксируется на другом экране - справа. Вследствие дифракции свет, проходящий через отверстие, расходится, поэтому область, которая была затемнена по законам геометрической оптики, будет частично освещённой. В области, которая при прямолинейном распространении света была бы освещённой, наблюдаются колебания интенсивности освещения в виде концентрических колец.

Дифракционная картина для дифракции Френеля зависит от расстояния между экранами и от расположения источников света. Её можно рассчитать, считая, что каждая точка на границе апертуры излучает сферическую волну по принципу Гюйгенса. В точке наблюдения (занимаемое вторым экраном) волны или усиливают друг друга, или гасятся в зависимости от разности хода.

Метод зон Френеля Френель предложил метод разбиения фронта волны на кольцевые зоны, который впоследствии получил название метод зон Френеля.

Пусть от источника света S распространяется монохроматическая сферическа­я волна, P - точка наблюдения. Через точку O проходит сферическая волновая поверхность. Она симметрична относительно прямой SP.

Разобьем эту поверхность на кольцевые зоны I, II, III и т.д. так, чтобы расстояния от краев зоны до точки P отличались на l/2 - половину длины световой волны. Это разбиение было предложено O. Френелем и зоны называют зонами Френеля.

Возьмем произвольную точку 1 в первой зоне Френеля. В зоне II найдется, в силу правила построения зон, такая соответствующая ей точка, что разность хода лучей, идущих в точку P от точек 1 и 2 будет равна l/2. Вследствие этого колебания от точек 1 и 2 погасят друг друга в точке P.

Зонная пластинка — плоскопараллельная стеклянная пластинка с выгравиров­анными концентрическими окружностями, радиус которых совпадает с радиусами зон Френеля. Зонная пластинка «выключает» чётные либо нечётные зоны Френеля, чем исключает взаимную интерференцию (погашение) от соседних зон, что приводит к увеличению освещённости точки наблюдения. Таким образом, зонная пластинка действует как собирающая линза.

Также зонная пластинка представляет собой простейшую голограмму — голограмму точки.

Интенсивность света в точке наблюдения P можно во много раз усилить, прикрыв все четные или все нечетные зоны Френеля. Оставшиеся неприкрытыми зоны будут усиливать действие друг друга. Прикрытие можно осуществить, поместив в плоскости отверстия так называемую зонную пластинку (рисунок 1). Ее можно изготовить, начертив на листе бумаги темные кольца, а затем сфотографировав их в уменьшенном масштабе. Внутренние радиусы колец должны быть пропорциональны квадратным корням из последовательных нечетных чисел, а внешние − из четных. Тогда получится пластинка, центр которой светлый. Можно изготовить аналогичную пластинку с темным центром. Ширина всех колец должна быть велика по сравнению с длиной волны. Тогда при надлежащих размерах колец пластинка со светлым центром будет удалять из волнового фронта все четные, а пластинка с темным центром − все нечетные зоны Френеля.

Зонная пластинка

Рисунок 1

Усиление интенсивности света зонной пластинкой аналогично фокусирующ­ему действию линзы. Более того, расстояния от пластинки до источника S и «изображения» P связаны тем же соотношением, что и соответствующие величины для линзы. Это видно из формулы:

Где «фокусное расстояние» определяется формулой:

Если центр зонной пластинки светлый, то число m − нечетное, в этом случае в формулу входит (внешний) радиус светлого кольца пластинки. Если же центр пластинки темный, то число m − четное и под Rm следует понимать (внешний) радиус темного кольца. Какой номер брать при вычислении f − это, конечно, не имеет значения.

С помощью зонной пластинки можно даже получать оптические изображения, хотя и весьма низкого качества.

В отличии от линзы зонная пластинка имеет несколько фокусов.

 



Поделиться:


Последнее изменение этой страницы: 2016-12-12; просмотров: 1566; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.217.98.175 (0.007 с.)