Качественный функциональный анализ органических соединений 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Качественный функциональный анализ органических соединений



 

Предварительные исследования образца. Анализ начинают с описания внешнего вида вещества. При этом отмечают его однородность и цвет. Для твердых веществ определяют температуру плавления. Если интервал составляет более 30С, то необходимо вещество перекристаллизовать. Для жидких веществ – определить показатель преломления.

Проба на сожжение (ТЯГА!). На крышку фарфорового тигля помещают 2–3 капли (0,5 г) исследуемого вещества. Крышку тигля постепенно вносят в верхнюю часть бесцветного пламени и следят за сжиганием вещества на небольшом огне, а затем крышку тигля сильно прокаливают. На основании наблюдений за характером горения вещества делают предположительное заключение о принадлежности его к какому–то классу соединений.

Если вещество сгорает коптящим пламенем с выделением сажи, то это указывает на присутствие ароматических или ацетиленовых соединений. Алифатические углеводороды горят светящим пламенем с небольшим образованием сажи. Вещества, содержащие кислород, горят голубоватым слабо светящимся пламенем. Несгораемый остаток, оставшийся на крышке тигля, свидетельствует о присутствии в веществе металла.

Определение растворимости. Исследование растворимости вещества в растворителях помогает определить наличие функциональных групп в образце. В пробирку помещают 2–3 капли жидкости или 0,1–0,5 г твердого вещества и постепенно прибавляют по каплям 0,3 мл растворителя, энергично взбалтывая. Растворение должно продолжаться не более 2–3 минут. Если вещество плохо растворяется при комнатной температуре, смесь осторожно нагревают до кипения.

В разбавленной соляной кислоте растворяются вещества основного характера (например, амины), в растворе гидрокарбоната – вещества сильнокислотные (карбоновые и сульфокислоты); а в щелочах – вещества кислого характера (кислоты, фенолы, меркаптаны).

В концентрированной серной кислоте растворение часто сопровождается разогреванием, изменением цвета раствора, что связано с химической реакцией между кислотой и веществом. Так реагируют многие кислородсодержащие вещества (эфиры, спирты). Серную кислоту наливают в пробирку (2-3 мл), а затем постепенно прибавляют исследуемое вещество, наблюдая за происходящими изменениями. Все наблюдения по растворимости вещества вносят в таблицу:

 

Т 0С Вода Растворы 5%-ные H2SO4 (конц.) Бензол Диэтил. эфир
    NaOH HCI NaHСО3      
               

Проба Бейльштейна на галогены

 

Медную проволоку длиной 10 см с петлей на конце прокаливают на пламени горелки до прекращения окрашивания пламени. Остывшую петлю, покрывшуюся черным налетом оксида меди(II), опускают в пробирку с 1-2 каплями испытуемого вещества, например хлороформа, и вновь вносят в пламя горелки. Немедленно появляется характерная ярко–зеленая окраска пламени.

При прокаливании оксид меди(II) окисляет углерод и водород органического вещества в СО2 и Н2О, медь же образует с галогеном летучие соединения, которые и окрашивают пламя горелки в зеленый цвет.

Химизм процесса:

 

2 СНСI3 + 5 CuO = CuCI2 + 4 CuCI + 2 CO2 + H2O

 

Этот способ качественного обнаружения галогена в органическом веществе был предложен в 1872 г. русским академиком Ф.Ф. Бейльштейном. Эта проба очень чувствительная, и положительный ее результат может быть обусловлен наличием в исследуемом веществе лишь следов примесей, содержащих галоген. Этим путем легко обнаруживается, например, хлор в слюне.

Фтор пробой Бейльштейна не обнаруживается, так как фторид меди не летуч.

 

Насыщенные углеводороды

Главной аналитической характеристикой этого класса органических соединений является их химическая инертность - отсутствие положительных реакций с такими реагентами как раствор брома, раствор перманганата калия и др.

 

Ненасыщенные углеводороды

Взаимодействие с бромом. Углеводороды, содержащие двойные или тройные связи, легко присоединяют бром, в результате чего наблюдается обесцвечивание реакционной смеси.

К раствору 0,2 г (или 1 мл) вещества в 2–3 мл хлороформа добавляют по каплям при встряхивании 5%-ный раствор брома в хлороформа. Мгновенное исчезновение окраски свидетельствует о наличии кратной связи в веществе. Но раствор брома также обесцвечивается соединениями, содержащими подвижный водород (фенолы, ароматические амины). Однако при этом происходит реакция замещения с выделением бромоводорода, присутствие которого легко можно обнаружить с помощью влажной индикаторной бумажки. Кроме того, бром является активным окислителем илегко окисляющиеся органические соединения (например, альдегиды) также дают положительную пробу.

Проба с перманганатом калия. В слабо щелочной среде при действии перманганата калия происходит окисление вещества с разрывом кратной связи, раствор при этом обесцвечивается, и образуется хлопьевидный осадок оксида марганца(IV).

К 0,2 г (или 1 мл) вещества, растворенного в воде или ацетоне, добавляют по каплям при встряхивании 1%-ный раствор перманганата калия. Происходит быстрое исчезновение малиновой окраски и появляется бурный осадок. Однако перманганат калия окисляет вещества других классов – альдегиды, многоатомные спирты, ароматические амины. При этом также обеспечиваются растворы, но окисление протекает большей частью значительно медленнее.

 

Ароматических соединения

Ароматические соединения в отличие от алифатических способны вступать в реакции замещения, образуя часто окрашенные соединения. Обычно для этого используют реакции нитрования и алкилирования.

Нитрование ароматических соединений. (ТЯГА!). Нитрование проводят азотной кислотой или нитрующей смесью. В пробирку помещают 0,2 г (или 2 мл) вещества и при непрерывном встряхивании постепенно прибавляют 3 мл нитрующей смеси (кон. серная и азотная кислоты в соотношении 1:1). Пробирку закрывают пробкой с длинной стеклянной трубкой, которая служит обратным холодильником, и нагревают на водяной бане 5 мин при 500С. Смесь выливают в стакан с 10 г измельченного льда. Если при этом выпадает твердый продукт или масло, не растворимые в воде и отличающиеся от исходного вещества, то можно предположить присутствие ароматической системы.

Алкилирование ароматических соединений. Ароматические углеводороды и их галогенпроизводные дают при взаимодействии с хлороформом в присутствии хлорида алюминия продукты, окрашенные в яркие цвета (оранжевый, пурпурный, синий, зеленый).

В пробирку к 1–2 мл обезвоженного хлороформа прибавляют 0,2 г (или 2 мл) исследуемого вещества и смесь перемешивают. Затем осторожно вносят 0,5 г порошка безводного хлорида алюминия так, чтобы большая его часть осталась на стенках пробирки выше уровня жидкости. Наклоняя пробирку, слегка смачивают порошок хлорида алюминия. Появление яркой окраски на стенке пробирки, а также окрашивание всего раствора указывает на присутствие ароматической системы.

 

Алифатические спирты

При анализе спиртов используют реакции замещения как подвижного водорода в гидроксильной группе, так и всей гидроксильной группы.

Реакция с металлическим натрием. Спирты легко реагируют с натрием, образуя при этом алкоголяты, растворимые в воде:

2 ROH + 2 Na 2 RONa + H2

В пробирку помещают 2–3 мл безводного исследуемого вещества и осторожно добавляют маленький кусочек металлического натрия. Выделение газа при растворении натрия указывает на присутствие активного водорода. Однако эту реакцию могут давать и другие органические соединения, проявляющие кислотный характер.

Реакция с солянокислым раствором хлорида цинка (Проба Лукаса).

Концентрированные галогенводородные кислоты способны замещать гидроксильную группу в спиртах на галоген, образуя нерастворимые в воде галогенпроизводные. Но замещение происходит с различной скоростью в зависимости от природы спирта. Первичные, вторичные и третичные спирты различаются по реакции их с соляной кислотой в присутствии хлорида цинка и без него. Так, третичные спирты реагируют с конц. соляной кислотой без хлорида цинка при комнатной температуре уже в течение 5 минут, а вторичные и первичные спирты при этом не реагируют.

В присутствии хлорида цинка третичные спирты взаимодействуют с соляной кислотой в течение 3–5 минут, при этом получаются нерастворимые в воде капли галоидного алкила. Вторичные спирты сначала растворяются с образованием прозрачного раствора, а затем раствор мутнеет и выпадают капли галогенпроизводного. Реакция для них возможна лишь при длительном нагревании или стоянии.

К 1 мл исследуемого вещества прибавляют 5 мл реактива Лукаса. Пробирку закрывают пробкой, энергично встряхивают и оставляют стоять на 5мин. Третичные спирты при этом через 2–3 минуты образуют хлористый алкил, оседающий в виде нерастворимых в воде капель. Вторичные спирты дают помутнение раствора, а выделение галогенпроизводного наступает лишь 10 минут. Первичные спирты образуют гомогенный раствор, выделения хлоропроизводного не наблюдается.

К 1 мл исследуемого вещества приливают 3 мл конц. соляной кислоты. Смесь сильно встряхивают и оставляют стоять на 3–5мин. Третичные спирты при этом образуют нерастворимый в кислоте галоидный алкил. Первичные и вторичные спирты в этих условиях заметно не реагирует. Эта реакция позволяет отличить третичные спирты от вторичных.

Многоатомные спирты. Реакция с гидроксидом меди (II). В двух-, трех– и многоатомных спиртах, содержащих 1,2-диольный фрагмент, в отличие от одноатомных спиртов растворяется свежеприготовленный гидроксид меди (II), с образованием темно–синего раствора комплексных солей соответствующих производных (гликолятов, глицератов).

В пробирку наливают несколько капель (0,3–0,5 мл) 3%-ного раствора сульфата меди, а затем 1 мл 10%-ного раствора NaOH. Выпадает студенистый голубой осадок гидроксида меди(II). Растворение осадка при добавлении 1 мл исследуемого вещества и изменение цвета раствора до темно – синего подтверждает присутствие многоатомного спирта с гидроксильными группами, расположенными у соседних атомов углерода.

 

Фенолы

Реакция с хлоридом железа(III). Фенолы дают с хлоридом железа(III) интенсивно окрашенные комплексные соли. Обычно появляется глубокая синяя или фиолетовая окраска, некоторые фенолы дают зеленое или красное окрашивание, оно ярче проявляется в воде или хлороформе и хуже в спирте.

В пробирку помещают несколько кристаллов исследуемого вещества в 2 мл воды или хлороформа, затем добавляют при встряхивании 1–3 капли 3%-ного раствора хлорида железа(III).В присутствии фенола появляется интенсивная фиолетовая или синяя окраска.

Реакция с бромной водой. Фенолы со свободными орто– и пара– положениями в бензольном ядре легко обесцвечивают бромную воду, при этом получается осадок 2,4,6–трибромфенола.

 

Небольшое количество исследуемого вещества встряхивают с 1 мл воды, затем прибавляют по каплям бромную воду. Происходит быстрое обесцвечивание раствора и выпадение белого осадка.

 

Карбонильные соединения

 

В отличие от кетонов альдегиды легко окисляются. На этом свойстве основано открытие альдегидов.

Реакция серебряного зеркала. Все альдегиды легко восстанавливают аммиачный раствор оксида серебра. Кетоны этой реакции не дают.

 

R–CHO + 2 Ag(NH3)2OH R–COONH4 + 2Ag + 3 NH4OH

 

В хорошо вымытой пробирке смешивают 1 мл раствора нитрата серебра с 1 мл 25-%-ного раствора аммиака. Выпавший первоначально осадок гидроксида серебра быстро растворяется в избытке аммиака. К полученному раствору прибавляют несколько капель спиртового раствора анализируемого вещества. Пробирку помещают на водяную баню и нагревают при 50-600С 10-15 минут. Если на стенках пробирки выделяется блестящий налет металлического серебра, то это свидетельствует о наличии альдегидной группы в исследуемом образце.

Следует отметить, что эту реакцию могут давать также и другие легко окисляющиеся соединения: многоатомные фенолы, 1,3-дикетоны и др.

Реакция с гидросульфитом натрия. Альдегиды, алифатические метилкетоны и алициклические кетоны при взаимодействии с гидросульфитом натрия образуют хорошо кристаллизующиеся сульфитные соединения:

 

R2C = O + NaHSO4 R2C (OH)SO3Na

 

В пробирку помещают 0,2 г (или 2 мл) исследуемого вещества, приливают 1 мл этилового спирта и 1 мл насыщенного раствора гидросульфита натрия. Пробирку закрывают пробкой и сильно встряхивают. Выпадение кристаллического осадка свидетельствует о наличии карбонильного соединения.

При отрицательных пробах на специфические реакции альдегидов, выпавший кристаллический осадок гидросульфитного соединения указывает на присутствие метилкетона или циклического кетона.

 



Поделиться:


Последнее изменение этой страницы: 2016-12-10; просмотров: 780; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.12.71.237 (0.019 с.)