ISDN-технология использует три основных типа интерфейса BRI: U, S и T. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

ISDN-технология использует три основных типа интерфейса BRI: U, S и T.



Введение

В наш век компьютерных технологий ни одна фирма не обходится без использования компьютеров. А если компьютеров несколько, то они, как правило, объединяются в локальную вычислительную сеть (ЛВС).

Компьютерная сеть - это система объединенных между собой компьютеров, а также, возможно, других устройств, которые называются узлами (рабочими станциями) сети. Все компьютеры, входящие в сеть соединены друг с другом и могут обмениваться информацией.

В результате объединения компьютеров в сеть появляются возможности:

- увеличения скорости передачи информационных сообщений

- быстрого обмена информацией между пользователями

- расширения перечня услуг, предоставляемых пользователям за счет объединения в сети значительных вычислительных мощностей с широким набором различного программного обеспечения и периферийного оборудования.

- использования распределенных ресурсов (принтеров, сканеров, CD-ROM, и т. д.).

- наличия структурированной информации и эффективного поиска нужных данных

Сети дают огромные преимущества, недостижимые при использовании ЭВМ по отдельности. Среди них:

- Разделение ресурсов процессора. При разделении ресурсов процессора возможно использование вычислительных мощностей для одновременной обработки данных всеми станциями, входящими в сеть.

- Разделение данных. Разделение данных предоставляет управлять базами данных с любых рабочих мест, нуждающихся в информации.

- Совместный доступ в Internet. ЛВС позволяет обеспечить доступ к Internet всем своим клиентам, используя всего один канал доступа.

- Разделение ресурсов. ЛВС позволяет экономно использовать дорогостоящие ресурсы (принтеры, плоттеры и др.) и осуществлять доступ к ним со всех присоединенных рабочих станций.

- Мультимедиа возможности. Современные высокоскоростные технологии позволяют передавать звуковую и видео информацию в реальном масштабе времени, что позволяет проводить видеоконференции и общаться по сети, не отходя от рабочего места.

ЛВС нашли широкое применение в системах автоматизированного проектирования и технологической подготовки производства, системах управления производством и технологическими комплексами, в конторских системах, бортовых системах управления и т.д. ЛВС является эффективным способом построения сложных систем управления различными производственными подразделениями.

 

Определение инфраструктуры сети

Инфраструктура сети - это набор физических и логических компонентов, которые обеспечивают связь, безопасность, маршрутизацию, управление, доступ и другие обязательные свойства сети.

Чаще всего инфраструктура сети определяется проектом, но многое определяют внешние обстоятельства и "наследственность". Например, подключение к Интернету требует обеспечить поддержку соответствующих технологий, в частности протокола TCP/IP. Другие же параметры сети, например физическая компоновка основных элементов, определяются при проектировании, а затем уже наследуются позднейшими версиями сети.

Под физической инфраструктурой сети подразумевают ее топологию, то есть физическое строение сети со всем ее оборудованием: кабелями, маршрутизаторами, коммутаторами, мостами, концентраторами, серверами и узлами. К физической инфраструктуре также относятся транспортные технологии: Ethernet, 802.11b, коммутируемая телефонная сеть общего пользования (PSTN), ATM - в совокупности они определяют, как осуществляется связь на уровне физических подключений.

Логическая инфраструктура сети состоит из всего множества программных элементов, служащих для связи, управления и безопасности узлов сети, и обеспечивает связь между компьютерами с использованием коммуникационных каналов, определенных в физической топологии. Примеры элементов логической инфраструктуры сети: система доменных имен (Domain Name System, DNS), сетевые протоколы, например TCP/IP, сетевые клиенты, например Клиент для сетей NetWare (Client Service for NetWare), а также сетевые службы, например Планировщик пакетов качества службы (QoS) [Quality of Service (QoS) Packet Scheduler].

Сопровождение, администрирование и управление логической инфраструктурой существующей сети требует глубокого знания многих сетевых технологий. Администратор сети даже в небольшой организации должен уметь создавать различные типы сетевых подключений, устанавливать и конфигурировать необходимые сетевые протоколы, знать методы ручной и автоматической адресации и методы разрешения имен и, наконец, устранять неполадки связи, адресации, доступа, безопасности и разрешения имен. В средних и крупных сетях у администраторов более сложные задачи: настройка удаленного доступа по телефонной линии и виртуальных частных сетей (VPN); создание, настройка и устранение неполадок интерфейсов и таблиц маршрутизации; создание, поддержка и устранение неполадок подсистемы безопасности на основе открытых ключей; обслуживание смешанных сетей с разными ОС, в том числе Microsoft Windows, UNIX и Nowell NetWare.

 

Сетевое администрирование.

Современные корпоративные информационные системы по своей природе всегда являются распределенными системами. Рабочие станции пользователей, серверы приложений, серверы баз данных и прочие сетевые узлы распределены по большой территории. В крупной компании офисы и площадки соединены различными видами коммуникаций, использующих различные технологии и сетевые устройства. Главная задача сетевого администратора — обеспечить надежную, бесперебойную, производительную и безопасную работу всей этой сложной системы.

Будем рассматривать сеть как совокупность программных, аппаратных и коммуникационных средств, обеспечивающих эффективное распределение вычислительных ресурсов. Все сети можно условно разделить на 3 категории:

локальные сети (LAN, Local Area Network);

глобальные сети (WAN, Wide Area Network);

городские сети (MAN, Metropolitan Area Network).

Глобальные сети позволяют организовать взаимодействие между абонентами на больших расстояниях. Эти сети работают на относительно низких скоростях и могут вносить значительные задержки в передачу информации. Протяженность глобальных сетей может составлять тысячи километров. Поэтому они так или иначе интегрированы с сетями масштаба страны.

Городские сети позволяют взаимодействовать на территориальных образованиях меньших размеров и работают на скоростях от средних до высоких. Они меньше замедляют передачу данных, чем глобальные, но не могут обеспечить высокоскоростное взаимодействие на больших расстояниях. Протяженность городских сетей находится в пределах от нескольких километров до десятков и сотен километров.

Локальные сети обеспечивают наивысшую скорость обмена информацией между компьютерами. Типичная локальная сеть занимает пространство в одно здание. Протяженность локальных сетей составляет около одного километра. Их основное назначение состоит в объединении пользователей (как правило, одной компании или организации) для совместной работы.

Механизмы передачи данных в локальных и глобальных сетях существенно отличаются. Глобальные сети ориентированы на соединение — до начала передачи данных между абонентами устанавливается соединение (сеанс). В локальных сетях используются методы, не требующие предварительной установки соединения, — пакет с данными посылается без подтверждения готовности получателя к обмену.

Кроме разницы в скорости передачи данных, между этими категориями сетей существуют и другие отличия. В локальных сетях каждый компьютер имеет сетевой адаптер, который соединяет его со средой передачи. Городские сети содержат активные коммутирующие устройства, а глобальные сети обычно состоят из групп мощных маршрутизаторов пакетов, объединенных каналами связи. Кроме того, сети могут быть частными или сетями общего пользования.

Сетевая инфраструктура строится из различных компонентов, которые условно можно разнести по следующим уровням:

1. кабельная система и средства коммуникаций;

2. активное сетевое оборудование;

3. сетевые протоколы;

4. сетевые службы;

5. сетевые приложения.

Каждый из этих уровней может состоять из различных подуровней и компонент. Например, кабельные системы могут быть построены на основе коаксиального кабеля ("толстого" или тонкого"), витой пары (экранированной и неэкранированной), оптоволокна. Активное сетевое оборудование включает в себя такие виды устройств, как повторители (репитеры), мосты, концентраторы, коммутаторы, маршрутизаторы. В корпоративной сети может быть использован богатый набор сетевых протоколов: TCP/IP, SPX/IPX, NetBEUI, AppleTalk и др.

Основу работы сети составляют так называемые сетевые службы (или сервисы). Базовый набор сетевых служб любой корпоративной сети состоит из следующих служб:

• службы сетевой инфраструктуры DNS, DHCP, WINS;

• службы файлов и печати;

• службы каталогов (например, Novell NDS, MS Active Directory);

• службы обмена сообщениями;

• службы доступа к базам данных.

Самый верхний уровень функционирования сети — сетевые приложения.

Сеть позволяет легко взаимодействовать друг с другом самым различным видам компьютерных систем благодаря стандартизованным методам передачи данных, которые позволяют скрыть от пользователя все многообразие сетей и машин.

Все устройства, работающие в одной сети, должны общаться на одном языке – передавать данные в соответствии с общеизвестным алгоритмом в формате, который будет понят другими устройствами. Стандарты – ключевой фактор при объединении сетей.

Для более строгого описания работы сети разработаны специальные модели. В настоящее время общепринятыми моделями являются модель OSI (Open System Interconnection) и модель TCP/IP (или модель DARPA).

Прежде чем определить задачи сетевого администрирования в сложной распределенной корпоративной сети, сформулируем определение термина "корпоративная сеть" (КС). Слово "корпорация" означает объединение предприятий, работающих под централизованным управлением и решающих общие задачи. Корпорация является сложной, многопрофильной структурой и вследствие этого имеет распределенную иерархическую систему управления. Кроме того, предприятия, отделения и административные офисы, входящие в корпорацию, как правило, расположены на достаточном удалении друг от друга. Для централизованного управления таким объединением предприятий используется корпоративная сеть.

Основная задача КС заключается в обеспечении передачи информации между различными приложениями, используемыми в организации. Под приложением понимается программное обеспечение, которое непосредственно нужно пользователю, например, бухгалтерская программа, программа обработки текстов, электронная почта и т.д. Корпоративная сеть позволяет взаимодействовать приложениям, зачастую расположенным в географически различных областях, и обеспечивает доступ к ним удаленных пользователей.

Обязательным компонентом корпоративной сети являются локальные сети, связанные между собой.

В общем случае КС состоит из различных отделений, объединенных сетями связи. Они могут быть глобальными (WAN) или городскими (MAN).

Итак, сформулируем задачи сетевого администрирования в сложной распределенной КС:

Планирование сети.

Несмотря на то, что планированием и монтажом больших сетей обычно занимаются специализированные компании-интеграторы, сетевому администратору часто приходится планировать определенные изменения в структуре сети — добавление новых рабочих мест, добавление или удаление сетевых протоколов, добавление или удаление сетевых служб, установка серверов, разбиение сети на сегменты и т.д. Данные работы должны быть тщательно спланированы, чтобы новые устройства, узлы или протоколы включались в сеть или исключались из нее без нарушения целостности сети, без снижения производительности, без нарушения инфраструктуры сетевых протоколов, служб и приложений.

Установка и настройка сетевых узлов (устройств активного сетевого оборудования, персональных компьютеров, серверов, средств коммуникаций).

Данные работы могут включать в себя — замену сетевого адаптера в ПК с соответствующими настройками компьютера, перенос сетевого узла (ПК, сервера, активного оборудования) в другую подсеть с соответствующим изменениями сетевых параметров узла, добавление или замена сетевого принтера с соответствующей настройкой рабочих мест.

Установка и настройка сетевых протоколов.

Данная задача включает в себя выполнение таких работ — планирование и настройка базовых сетевых протоколов корпоративной сети, тестирование работы сетевых протоколов, определение оптимальных конфигураций протоколов.

Установка и настройка сетевых служб.

Корпоративная сеть может содержать большой набор сетевых служб. Кратко перечислим основные задачи администрирования сетевых служб:

1. установка и настройка служб сетевой инфраструктуры (службы DNS, DHCP, WINS, службы маршрутизации, удаленного доступа и виртуальных частных сетей);

2. установка и настройка служб файлов и печати, которые в настоящее время составляют значительную часть всех сетевых служб;

3. администрирование служб каталогов (Novell NDS, Microsoft Active Directory), составляющих основу корпоративной системы безопасности и управления доступом к сетевым ресурсам;

4. администрирование служб обмена сообщениями (системы электронной почты);

5. администрирование служб доступа к базам данных.

Поиск неисправностей.

Сетевой администратор должен уметь обнаруживать широкий спектр неисправностей — от неисправного сетевого адаптера на рабочей станции пользователя до сбоев отдельных портов коммутаторов и маршрутизаторов, а также неправильные настройки сетевых протоколов и служб.

Поиск узких мест сети и повышения эффективности работы сети.

В задачу сетевого администрирования входит анализ работы сети и определение наиболее узких мест, требующих либо замены сетевого оборудования, либо модернизации рабочих мест, либо изменения конфигурации отдельных сегментов сети.

Мониторинг сетевых узлов.

Мониторинг сетевых узлов включает в себя наблюдение за функционированием сетевых узлов и корректностью выполнения возложенных на данные узлы функций.

Мониторинг сетевого трафика.

Мониторинг сетевого трафика позволяет обнаружить и ликвидировать различные виды проблем: высокую загруженность отдельных сетевых сегментов, чрезмерную загруженность отдельных сетевых устройств, сбои в работе сетевых адаптеров или портов сетевых устройств, нежелательную активность или атаки злоумышленников (распространение вирусов, атаки хакеров и др.).

Обеспечение защиты данных.

Защита данных включает в себя большой набор различных задач: резервное копирование и восстановление данных, разработка и осуществление политик безопасности учетных записей пользователей и сетевых служб (требования к сложности паролей, частота смены паролей), построение защищенных коммуникаций (применение протокола IPSec, построение виртуальных частных сетей, защита беспроводных сетей), планирование, внедрение и обслуживание инфраструктуры открытых ключей (PKI).

 

 

ISDN

 

Назначение[править | править вики-текст]

Основное назначение ISDN — передача данных со скоростью до 64 кбит/с по абонентской проводной линии и обеспечение интегрированных телекоммуникационных услуг (телефон, факс, и пр.). Использование для этой цели телефонных проводов имеет два преимущества: они уже существуют и могут использоваться для подачи питания на терминальное оборудование.

Выбор 64 кбит/c стандарта определяется следующими соображениями. При полосе частот 4 кГц, согласно теореме Котельникова, частота дискретизации должна быть не ниже 8 кГц. Минимальное число двоичных разрядов для представления результатов стробирования голосового сигнала при условии логарифмического преобразования равно 8. Таким образом, в результате перемножения этих чисел (8 кГц * 8 (число двоичных разрядов) = 64) и получается значение полосы B-канала ISDN, равное 64 кб/с. Базовая конфигурация каналов имеет вид 2 × B + D = 2 × 64 + 16 = 144 кбит/с. Помимо B-каналов и вспомогательного D-канала, ISDN может предложить и другие каналы с большей пропускной способностью: канал Н0 с полосой 384 кбит/с, Н11 — 1536 кбит/c и Н12 — 1920 кбит/c (реальные скорости цифрового потока). Для первичных каналов (1544 и 2048 кбит/с) полоса D-канала может составлять 64 кбит/с.

Принцип работы[править | править вики-текст]

Для объединения в сети ISDN различных видов трафика используется технология TDM (англ. Time Division Multiplexing, мультиплексирование по времени). Для каждого типа данных выделяется отдельная полоса, называющаяся элементарным каналом (или стандартным каналом). Для этой полосы гарантируется фиксированная, согласованная доля полосы пропускания. Выделение полосы происходит после подачи сигнала CALL по отдельному каналу, называющемуся каналом внеканальной сигнализации.

В стандартах ISDN определяются базовые типы каналов, из которых формируются различные пользовательские интерфейсы.

Тип Полоса Описание
A Аналоговая телефонная линия, 4кГц.
B 64 кб/с Передача данных или 1 телефонная линия (1 поток оцифрованного звука)
C 8/16 кб/с Передача данных
D 16/64 кб/с Канал внеканальной сигнализации (управление другими каналами)
E 64 кб/с Внутренняя сигнализация ISDN
H0 384 кб/с Передача данных
H10 1472 кб/с Передача данных
H11 1536 кб/с Передача данных
H12 1920 кб/с Передача данных

В большинстве случаев применяются каналы типов B и D.

Из указанных типов каналов формируются интерфейсы, наибольшее распространение получили следующие типы:

Интерфейс базового уровня[править | править вики-текст]

Интерфейс базового уровня (англ. Basic Rate Interface, BRI) — предоставляет для связи аппаратуры абонента и ISDN-станции два B-канала и один D-канал. Интерфейс базового уровня описывается формулой2B+D. В стандартном режиме работы BRI могут быть одновременно использованы оба B-канала (например, один для передачи данных, другой для передачи голоса) или один из них. При одновременной работе каналов они могут обеспечивать соединение с разными абонентами. Максимальная скорость передачи данных для BRI интерфейса составляет 128кб/с. D-канал используется только для передачи управляющей информации. В режиме AO/DI (Always On/Dynamic ISDN) полоса 9,6 кбит/c D-канала используется в качестве постоянно включённого выделенного канала X.25, как правило, подключаемого к Интернет. При необходимости используемая для доступа к Интернет полоса расширяется путём включения одного или двух B-каналов. Этот режим, хотя и стандартизирован (под наименованием X.31), не нашёл широкого распространения. Для входящих соединений BRI поддерживается до 7 адресов (номеров), которые могут назначаться различными ISDN-устройствами, разделяющими одну абонентскую линию. Дополнительно обеспечивается режим совместимости с обычными, аналоговыми абонентскими устройствами — абонентское оборудование ISDN, как правило, допускает подключение таких устройств и позволяет им работать прозрачным образом. Интересным побочным эффектом такого «псевдоаналогового» режима работы стала возможность реализации симметричного модемного протокола X2 (англ.) фирмы US Robotics, позволявшего передачу данных поверх линии ISDN в обе стороны на скорости 56 кбит/c.

Наиболее распространённый тип сигнализации — Digital Subscriber System No. 1 (DSS1), также известный как Euro-ISDN. Используется два магистральных режима портов BRI относительно станции или телефонов — S/ТЕ и NT. Режим S/ТЕ — порт эмулирует работу ISDN телефона, режим NT — эмулирует работу станции. Отдельное дополнение — использование ISDN-телефона с дополнительным питанием в этом режиме, так как стандартно не все порты (и карты HFC) дают питание по ISDN-шлейфу (англ. inline power). Каждый из двух режимов может быть «точка-многоточка» (англ. point-to-multi-point, PTMP) он же MSN (англ. Multiple Subscriber Number), или «точка-точка» (англ. point-to-point, PTP).
В первом режиме для поиска адресата назначения на шлейфе используются номера MSN, которые, как правило, совпадают с выделенными провайдером телефонии городскими номерами. Провайдер должен сообщить передаваемые им MSN. Иногда провайдер использует так называемые «технические номера» — промежуточные MSN.
Во втором режиме BRI-порты могут объединяться в транк — условную магистраль, по которой передаваемые номера могут использоваться в многоканальном режиме.

Определение технологии DSL


DSL расшифровывается как Digital Subscriber Line (цифровая абонентская линия). DSL является достаточно новой технологией, позволяющей значительно расширить полосу пропускания старых медных телефонных линий, соединяющих телефонные станции с индивидуальными абонентами. Любой абонент, пользующийся в настоящий момент обычной телефонной связью, имеет возможность с помощью технологии DSL значительно увеличить скорость своего соединения, например, с сетью Интернет. Следует помнить, что для организации линии DSL используются именно существующие телефонные линии; данная технология тем и хороша, что не требует прокладывания дополнительных телефонных кабелей. В результате вы получаете круглосуточный доступ в сеть Интернет с сохранением нормальной работы обычной телефонной связи. Благодаря многообразию технологий DSL пользователь может выбрать подходящую именно ему скорость передачи данных - от 32 Кбит/с до более чем 50 Мбит/с. Данные технологии позволяют также использовать обычную телефонную линию для таких широкополосных систем, как видео по запросу или дистанционное обучение. Современные технологии DSL приносят возможность организации высокоскоростного доступа в Интернет в каждый дом или на каждое предприятие среднего и малого бизнеса, превращая обычные телефонные кабели в высокоскоростные цифровые каналы. Причем скорость передачи данных зависит только от качества и протяженности линии, соединяющих пользователя и провайдера. При этом провайдеры обычно дают возможность пользователю самому выбрать скорость передачи, наиболее соответствующую его индивидуальным потребностям.

Как работает DSL?

Телефонный аппарат, установленный у вас дома или в офисе, соединяется с оборудованием телефонной станции с помощью витой пары медных проводов. Традиционная телефонная связь предназначена для обычных телефонных разговоров с другими абонентами телефонной сети. При этом по сети передаются аналоговые сигналы. Телефонный аппарат воспринимает акустические колебания (являющиеся естественным аналоговым сигналом) и преобразует их в электрический сигнал, амплитуда и частота которого постоянно изменяется. Так как вся работа телефонной сети построена на передаче аналоговых сигналов, проще всего, конечно же, использовать для передачи информации между абонентами или абонентом и провайдером именно такой метод. Именно поэтому используется модем, который позволяет демодулировать аналоговый сигнал и превратить его в последовательность нулей и единиц цифровой информации, воспринимаемой компьютером.

При передаче аналоговых сигналов используется только небольшая часть полосы пропускания витой пары медных телефонных проводов; при этом максимальная скорость передачи, которая может быть достигнута с помощью обычного модема, составляет около 56 Кбит/с. DSL представляет собой технологию, которая исключает необходимость преобразования сигнала из аналоговой формы в цифровую форму и наоборот. Цифровые данные передаются на ваш компьютер именно как цифровые данные, что позволяет использовать гораздо более широкую полосу частот телефонной линии. При этом существует возможность одновременно использовать и аналоговую телефонную связь, и цифровую высокоскоростную передачу данных по одной и той же линии, разделяя спектры этих сигналов.

Индивидуальное подключение абонентов

Семиуровневая модель OSI

Для единого представления данных в сетях с неоднородными устройствами и программным обеспечением международная организация по стандартам ISO (International Standardization Organization) разработала базовую модель связи открытых систем OSI (Open System Interconnection) [4]. Эта модель описывает правила и процедуры передачи данных в различных сетевых средах при организации сеанса связи. Основными элементами модели являются уровни, прикладные процессы и физические средства соединения. На рис. 1.10 представлена структура базовой модели.

Каждый уровень модели OSI выполняет определенную задачу в процессе передачи данных по сети. Базовая модель является основой для разработки сетевых протоколов. OSI разделяет коммуникационные функции в сети на семь уровней, каждый из которых обслуживает различные части процесса области взаимодействия открытых систем.

Модель OSI описывает только системные средства взаимодействия, не касаясь приложений конечных пользователей. Приложения реализуют свои собственные протоколы взаимодействия, обращаясь к системным средствам.

Рис. 1.10. Модель OSI

Если приложение может взять на себя функции некоторых верхних уровней модели OSI, то для обмена данными оно обращается напрямую к системным средствам, выполняющим функции оставшихся нижних уровней модели OSI.

 

Настройка протокола IPv4

Публичные IPv4-адреса

Публичные IPv4-адреса должны быть уникальными. Публичные IPv4-адреса назначаются организацией IANA. Обычно поставщик услуг Интернета выделяет один или несколько публичных адресов из своего пула адресов. Число выделяемых поставщиком услуг Интернета адресов зависит от числа устройств и узлов, которое требуется подключить к Интернету.

Частные IPv4-адреса

Пул IPv4-адресов истощается, поэтому организация IANA неохотно выделяет избыточное число IPv4-адресов. Такие технологии, как преобразование сетевых адресов (NAT), позволяют администраторам использовать сравнительно небольшое число публичных IPv4-адресов, одновременно подключая локальные узлы к удаленным узлам и службам через Интернет.

Организация IANA определяет следующие диапазоны адресов в качестве частных адресов. Подключенные к Интернету маршрутизаторы не перенаправляют пакеты, исходящие с этих адресов или предназначенные им.

Класс Маска Диапазон
A 10.0.0.0/8 10.0.0.0 - 10.255.255.255
B 172.16.0.0/12 172.16.0.0 - 172.31.255.255
C 192.168.0.0/16 192.168.0.0 - 192.168.255.255

Статическая конфигурация

Статическую конфигурацию IPv4-адреса можно вручную задать для любого компьютера сети. Типичные конфигурации протокола IPv4 включают следующие элементы.

· IPv4-адрес

· Маска подсети.

· Шлюз по умолчанию.

· DNS-сервер.

Для настройки статической конфигурации IPv4 необходимо ввести соответствующие параметры на каждом компьютере. Такой подход отнимает много времени, если в сети больше 20 пользователей. Кроме того, большой объем операций настройки, выполняемых вручную, увеличивает риски ошибок.

DHCPv4

Протокол DHCPv4 позволяет автоматически задавать конфигурации IPv4-адресов для большого числа компьютеров без необходимости настраивать каждый компьютер отдельно. Служба DHCP получает запросы на настройку IPv4 от компьютеров, в параметрах которых указано, что они должны автоматически получать IPv4-адреса. Кроме того, она назначает IPv4-адреса из диапазонов, определенных для каждой из подсетей сети. Служба DHCP определяет подсеть, из которой получен запрос, и назначает IP-адрес из соответствующего диапазона.

Служба DHCP упрощает процесс настройки IP-адресов, однако следует помнить, что если IPv4-адреса назначаются с помощью службы DHCP, а используемые приложения важны для работоспособности бизнеса, необходимо выполнить следующее.

1. Повысьте отказоустойчивость службы DHCP, чтобы выход из строя одного сервера не приводил к остановке в работе службы.

2. Внимательно настройте диапазоны адресов на DHCP-сервере. Если допустить ошибку, это скажется на работе всей сети и не позволит компьютерам взаимодействовать.

Пространство адресов IPv6

Пространство IPv6-адресов использует 128 бит в отличие от пространства IPv4-адресов, где используются только 32 бита. Поэтому общее число возможных IPv6-адресов существенно больше общего числа возможных IPv4-адресов. В IPv6-адресе 64 бита выделяется под идентификатор сети и 64 бита выделяется под идентификатор узла. Однако при иерархической маршрутизации протокол IPv6 позволяет выделить под идентификатор сети менее 64 бит.

Синтаксис IPv6

Для более краткого представления адресов в протоколе IPv6 не используется десятичная нотация с точками. Вместо этого в IPv6 используется шестнадцатеричная нотация, в которой каждые четыре разряда отделяются двоеточием. Каждый шестнадцатеричный разряд представляет четыре бита.

Чтобы еще больше сократить отображаемые IPv6-адреса, можно опустить нули в начале адреса или использовать уплотнение за счет нулей. Внутри каждой группы из четырех знаков можно опустить начальные нули и отображать группы из четырех нулей как один ноль. Уплотнение за счет нулей позволяет представлять несколько последовательных групп нулей в виде сдвоенных двоеточий.

Описание Пример
Полный IPv6-адрес 2001:0DB8:0000:0000:02AA:00FF:FE28:9C5A/64
IPv6-адрес с опущенными начальными нулями 2001:DB8:0:0:2AA:FF:FE28:9C5A/64
IPv6-адрес, в котором опущены непрерывные группы нулей и начальные нули 2001:DB8::2AA:FF:FE28:9C5A/64

Для определения идентификатора сети в каждом IPv6-адресе используется префикс. Этот префикс можно использовать вместо маски подсети аналогично использованию бесклассовой междоменной маршрутизации в протоколе IPv4. Префикс представляет собой прямую косую черту, после которой указывается число битов в идентификаторе сети. В приведенных выше примерах этот префикс указывает, что идентификатор сети состоит из 64 бит.

Типы IPv6-адресов

Типы IPv6-адресов аналогичны типам IPv4-адресов.

Типы IPv6-адресов:

· Одноадресные. IPv6-адреса одноадресной рассылки эквивалентны IPv4-адресам одноадресной рассылки. Их можно использовать для передачи данных между узлами "один-к-одному". У каждого IPv6-узла имеется несколько адресов одноадресной рассылки. Имеется три типа адресов одноадресной рассылки:

· глобальный адрес одноадресной рассылки. Он эквивалентен публичному IPv4-адресу. Эти адреса глобально маршрутизируемы и доступны в сегменте Интернета, работающем по протоколу IPv6;

· публичная топология. Первые 48 бит глобального адреса одноадресной рассылки называются публичной топологией. Публичная топология является уникальной в масштабах всего Интернета. Это набор крупных и мелких поставщиков услуг Интернета, обеспечивающих доступ к Интернету по протоколу IPv6. Организация IANA назначает поставщикам услуг Интернета по одному уникальному адресу в глобальном префиксе маршрутизации;

· топология сайта. Поставщик услуг Интернета может разделить сетевой адрес, полученный от IANA, на подсети, используя следующие 16 бит, которые называются топологией сайта. 16 бит топологии сайта позволяют поставщику услуг Интернета создать до 65536 подсетей максимально эффективным способом, соответствующим базе клиентов этого поставщика.

· локальные адреса каналов. Узлы используют локальные адреса каналов при взаимодействии с соседними узлами, использующими тот же канал. Например, в IPv6-сети с одним каналом и без маршрутизатора узлы взаимодействуют с помощью локальных адресов каналов.

Локальные IPv6-адреса каналов эквивалентны IPv4-адресам APIPA. В случае сбоя DHCP-серверов функция APIPA выделяет адреса в частном диапазоне от 169.254.0.1 до 169.254.255.254. Клиенты проверяют уникальность своих адресов в локальной сети с помощью протокола ARP. Когда у DHCP-сервера снова появляется возможность обрабатывать запросы, клиенты автоматически обновляют свои адреса.

Локальные адреса каналов также обладают следующими особенностями:

· Локальные адреса каналов всегда начинаются с FE80.

· IPv6-маршрутизатор никогда не перенаправляет трафик локальных каналов за пределы этих каналов;

· адреса APIPA автоматически назначаются IPv4-узлам. Использование этих адресов ограничено взаимодействием внутри локальной подсети, и они обычно применяются, когда другие подходящие адреса недоступны;

· Уникальные локальные адреса одноадресной рассылки. Они эквивалентны частным адресным пространствам IPv4, например 10.0.0.0/8. Все уникальные локальные адреса одноадресной рассылки имеют префикс FD00::/8;

· глобальный идентификатор занимает следующие 40 бит. Глобальный идентификатор уникальным образом представляет организацию. Этот идентификатор следует создавать случайным образом, чтобы максимизировать уникальность организации. Это бывает полезно при слиянии двух организаций;

· При использовании уникальных глобальных идентификаторов маршрутизация между организациями происходит без изменения конфигурации сети. Следующие 16 бит следует использовать внутри организации, чтобы создавать подсети для маршрутизации между расположениями и внутри них. Выделенные 16 бит позволяют организации создать доя 65536 подсетей для внутреннего использования.

· Адреса произвольной рассылки. Адрес произвольной рассылки - это IPv6-адрес одноадресной рассылки, назначенный нескольким компьютерам. Если пакет отправляется на IPv6-адрес произвольной рассылки, отвечает только ближайший узел. Обычно такая рассылка используется для обнаружения служб или ближайшего маршрутизатора.

· Многоадресные. IPv6-адреса многоадресной рассылки эквивалентны IPv4-адресам многоадресной рассылки. Их следует использовать для отправки данных от одного компьютера множеству компьютеров, определенных с использованием такого же адреса многоадресной рассылки.

Согласно протоколу IPv4 узлу обычно назначался один адрес одноадресной рассылки. Но протокол IPv6 позволяет назначить каждому узлу несколько адресов одноадресной рассылки. Чтобы проверить процессы обмена данными по сети, необходимо знать, для каких целей в протоколе IPv6 используется каждый из этих адресов.

Идентификаторы интерфейсов

Последние 64 бита IPv6-адреса представляют собой идентификатор интерфейса. Идентификатор интерфейса эквивалентен идентификатору узла в IPv4-адресе. У каждого интерфейса в IPv6-сети должен быть уникальный идентификатор интерфейса. Поскольку идентификатор интерфейса уникальным образом обозначает каждый интерфейс, в протоколе IPv6 идентификатор интерфейса используется вместо MAC-адресов для уникальной идентификации узлов.

В среде Windows операционная система Windows Server 2008 R2 использует адреса EUI-64, определенные организацией IEEE. В гигабитных адаптерах вместо MAC-адресов используются адреса EUI-64. Сетевые адаптеры создают адрес EUI-64 на основе 48-битового MAC-адреса, добавляя в него дополнительную информацию.

Чтобы сохранить конфиденциальность при взаимодействии по сети, необходимо создавать идентификатор интерфейса вместо использования аппаратного адреса сетевого адаптера. Для присвоения идентификатора интерфейса узел IPv6 может использовать следующее:

· Случайным образом созданный временный идентификатор

· Случайным образом созданный постоянный идентификатор

· Идентификатор, назначенный вручную



Поделиться:


Последнее изменение этой страницы: 2016-09-20; просмотров: 500; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.140.242.165 (0.103 с.)