Характер взаимодействия «вирус–клетка» 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Характер взаимодействия «вирус–клетка»



Известны следующие типы взаимодействий «вирус–клетка»: продуктивный (образуется дочерняя популяция), интегративный (вирогенЋя), абортивный (дочерняя популяция не образуется) и интерференция вирусов (инфицирование чувствительной клетки разными вирусами).

Продуктивное взаимодействие «вирус–клетка» чаще носит литический характер, то есть заканчивается гибелью и лизисом инфицированной клетки, что происходит после полной сборки дочерней популяции. Гибель клетки вызывают следующие факторы: раннее подавление синтеза клеточных белков, накопление токсических и повреждающих клетку вирусных компонентов, повреждение лизосом и высвобождение их ферментов в цитоплазму.

Интегративное взаимодействие, или вирогенЋя, не приводит к гибели клетки. Нуклеиновая кислота вируса встраивается в геном клетки-хозяина и в последующем функционирует как его составная часть. Наиболее яркие примеры подобного взаимодействия — лизогенЋябактерий и вирусная трансформацияклеток.

Абортивное взаимодействие не приводит к появлению дочерней популяции и происходит при взаимодействии вируса с покоящейся клеткой (стадия клеточного цикла G0) либо при инфицировании клетки вирусом с изменёнными (дефектными) свойствами. Следует различать дефектные вирусы и дефектные вирионы. Первые существуют как самостоятельные виды и функционально неполноценны, так как для их репликации необходим «вирус-помощник» (например, для репликации аденоассоциированного вируса необходимо присутствие аденовирусов). Вторые составляют дефектную группу, формирующуюся при образовании больших дочерних популяций (например, могут образовываться пустые капсиды либо безоболочечные нуклеокапсиды). Особая форма дефектных вирионов — псевдовирионы, включившие в капсид нуклеиновую кислоту клетки-хозяина.

Интерференция вирусов происходит при инфицировании клетки двумя вирусами. Различают гомологичную (при инфицировании клетки родственными вирусами) и гетерологичную (если интерферируют неродственные виды) интерференцию. Это явление возникает не при всякой комбинации возбудителей, иногда два разных вируса могут репродуцироваться одновременно (например, вирусы кори и полиомиелита). Интерференция реализуется либо за счёт индукции одним вирусом клеточных ингибиторов (например, ИФН), подавляющих репродукцию другого, либо за счёт повреждения рецепторного аппарата или метаболизма клетки первым вирусом, что исключает возможность репродукции второго.

Типы инфицирования клеток

По характеру взаимодействия генома вируса с геномом клетки выделяют автономное (геном вируса не интегрирован в геном клетки) и интеграционное (геном вируса интегрирован в геном клетки) инфицирование. Особую форму составляют латентное и персистирующее инфицирование.

Латентное инфицирование. ДНК некоторых вирусов (герпесвирусы, ретровирусы) может находиться в клетке вне хромосом, либо вирусная ДНК интегрируется в ядерный геном, но вирусоспецифические синтезы не происходят. Такая вирусная ДНК образует латентный провирус, реплицирующийся вместе с хромосомой. Подобные состояния вирусной ДНК нестабильны, возможны периодические реактивации с переходом в продуктивное взаимодействие «вирус–клетка», либо клетка трансформируется, давая начало злокачественному росту.

Персистирующее инфицирование. Некоторые РНК-вирусы могут вызывать персистирующие инфекции, проявляющиеся образованием дочерних популяций возбудителя после завершения острой фазы болезни. При этом происходит постепенное выделение вирусных частиц, но инфицированная клетка не лизируется. Нередко дочерние популяции вирионов дефектны (часто наблюдают у лиц с иммунодефицитами). Иногда такие хронические поражения протекают без клинических проявлений. В частности, вирус гепатита В способен вызывать персистирующее поражение гепатоцитов с развитием хронического гепатита; в дальнейшем возможна малигнизация клеток.

Репродуктивный цикл вирусов

Изображённые на рис. 23 этапы репродукции (от адсорбции вирионов до высвобождения дочерней популяции) происходят при продуктивном взаимодействии вируса с клеткой.

Ы Вёрстка, Рисунок 02 - 03

Рис. 23. Основные этапы репродукции вирусов.

Адсорбция. Первая стадия репродуктивного цикла — адсорбция вириона на поверхности инфицируемой клетки. Адсорбция происходит путём взаимодействия вириона со специфическими клеточными рецепторами. За распознавание рецепторов ответственны белки, входящие в состав капсида либо суперкапсида. Таким образом, понятие «тропизм вирусов» объясняется специфическим взаимодействием вирусных белков с поверхностными рецепторами инфицируемой клетки. Например, полиовирус проникает в клетки центральной нервной системы (ЦНС) и желудочно-кишечного тракта (ЖКТ) и размножается в них, так как у человека и приматов только эти клетки имеют рецепторы к белкам полиовирусов.

Процесс адсорбции не зависит от температуры (то есть не требует энергетических затрат) и протекает в две фазы: фаза ионного притяжения обусловлена неспецифическим взаимодействием, фаза прикрепления происходит благодаря структурной гомологии либо комплементарности взаимодействующих молекул.

Количество инфекционных вирусных частиц, адсорбированных на клетке, определяет термин «множественность заражения» (инфицирования). Обычно животная клетка содержит около 50 000 рецепторов, и её заражение носит множественный характер, то есть на клетке может сорбироваться большое количество вирионов. Тем не менее, инфицированная вирусом клетка обычно толерантна к повторному заражению гомологичным вирусом.

Проникновение и «раздевание». «Голые» вирусы проникают в клетку путём эндоцитоза — погружения участка клеточной мембраны в месте их адсорбции. Иначе этот процесс известен как виропексис [вирус + греч. pеxis, прикрепление]. «Одетые» вирусы проникают в клетку путём слияния суперкапсида с клеточной мембраной при участии специфических F - белков (белков слияния). Кислые значения рН способствуют слиянию вирусной оболочки и клеточной мембраны. При проникновении «голых» вирусов в клетку образуются вакуоли (эндосомы). После проникновения «одетых» вирусов в цитоплазму происходит частичная депротеинизация вирионов и модификация их нуклеопротеида (раздевание). Модифицированные частицы теряют инфекционные свойства, в ряде случаев изменяются чувствительность к РНКазе, нейтрализующему действию антител (АТ) и другие признаки, специфичные для отдельных групп вирусов.

Теневая фаза. После депротеинизации вирусы невозможно выделить из культуры клеток. Этот этап репродукции известен как теневая фаза, или фаза љклипса [от англ. eclipse, затмение]. Она включает репликацию нуклеиновых кислот вируса и синтез вирусных белков. Теневая фаза не происходит при температуре 0–4 °С (исключая вирус гриппа). Различия в энергетических потребностях для теневой фазы разных групп вирусов указывают на возможное участие в этом процессе различных клеточных реакций. Теневая фаза заканчивается после образования составных компонентов вируса, необходимых для сборки дочерних популяций.

Образование дочерних вирусных частиц в заражённой клетке подразумевает необходимость трёх процессов:

1) экспрессия генетического материала в виде его транскрипции и последующей трансляции, что приводит к появлению вирусных белков;

2) синтез генетического материала вируса (репликация);

3) сборка из генетического материала и вирусных белков дочерних популяций.

Следует помнить, что генетическим материалом вирионов может быть либо ДНК, либо РНК (подробнее см. раздел главы 2 «Нуклеиновые кислоты»).

Транскрипция

+РНК - содержащие вирусы. Функции мРНК выполняет геном (+РНК), поэтому у таких вирусов для синтеза вирусных белков (трансляция) нет необходимости в процессе транскрипции. Другими словами, у +РНК - содержащих вирусов транскрипция отсутствует.

РНК - содержащие вирусы и вирусы, имеющие две нити РНК. Функции мРНК выполняют транскрипты, комплементарные –РНК вириона. Поэтому у таких вирусов транскрипция существует как самостоятельный этап репродуктивного цикла. Для образования транскриптов в составе вирионов имеется собственная РНК-полимераза (транскриптаза).

ДНК - вирусы. Транскрипция — самостоятельный этап репродуктивного цикла, так как геном ДНК-вирусов должен транскрибироваться для образования мРНК. Вирусы, репродуцирующиеся в ядре (например, герпес- и аденовирусы) для этой цели используют клеточную ДНК-зависимую РНК-полимеразу (транскриптазу). Вирусы, репродуцирующиеся в цитоплазме (например, поксвирусы) лишены такой способности и содержат (как и вирусы с –РНК) собственную транскриптазу.

Трансляция. Термином «трансляция» называют механизмы, при помощи которых последовательность нуклеотидных оснований мРНК переводится в специфическую последовательность аминокислот в синтезируемом полипептиде. Этому процессу предшествует связывание мРНК с рибосомами. При этом (связывание мРНК и инициация трансляции) происходит «дискриминация» клеточных мРНК, и синтетические процессы на рибосомах переходят под вирусный контроль. Вирусные геномы кодируют синтезы двух классов белков: структурные белки входят в состав дочерних популяций, а неструктурные белки обслуживают процессы репродукции, но не входят в состав дочерних популяций (ингибиторы синтеза клеточных РНК и белков, протеазы и др.).

РНК - содержащие вирусы. Поскольку вирусный геном кодирует несколько белков, то возможно два варианта трансляции: 1) каждый полипептид синтезируется отдельно от других (тога- и ретровирусы); 2) сначала образуется большой полипептид-предшественник, который в дальнейшем «нарезается» на отдельные полипептиды (пара- и ортомиксовирусы, а также рабдо-, арена- и буньявирусы). Некоторые вирусы используют оба этих механизма. Полипептиды, образующиеся при обоих вариантах трансляции, могут подвергаться посттрансляционной модификации (гликозилирование, фосфорилирование или сульфатирование).

ДНК - содержащие вирусы. В трансляционных процессах доминирует трансляция отдельных мРНК, кодирующих индивидуальные полипептиды. В отдельных случаях (например, у аденовирусов) не менее трёх белков образуются путём нарезания общего полипептида-предшественника.

Репликация. В зависимости от типа генетического материала (ДНК или РНК), образование дочерних копий геномов протекает по-разному. У ДНК-геномных вирусов репликация вирусных ДНК принципиально сходна с репликацией клеточных ДНК. Репликацию РНК-геномных вирусов осуществляют вирусные РНК-зависимые РНК-полимеразы (репликазы). Исключение составляют ретровирусы, их +РНК служит матрицей для синтеза ДНК. Синтез ДНК на матрице РНК осуществляет вирусная РНК - зависимая ДНК - полимераза (обратная транскриптаза), необходимая для переписывания информации с РНК на ДНК. Синтезируемая вирусная ДНК интегрируется в клеточный геном в форме ДНК-провируса.

Однонитевые РНК. Репликация протекает в два этапа: первый включает образование матрицы, комплементарной геному; второй — образование копий РНК с этой матрицы. При репликации +РНК-вирусов количество копий –РНК (на матрице родительской нити +РНК) строго контролируется, а количество копий +РНК (с матрицы синтезированной нити –РНК) не контролируется.

Двухнитевые РНК. В качестве матрицы для синтеза +РНК вирусные репликазы используют минус-нить РНК и наоборот. Часть молекул –РНК соединяется с +РНК и образует двухнитевую молекулу РНК, а другая часть молекул –РНК функционирует как матрица для синтеза мРНК.

Сборка. У просто устроенных вирусов, состоящих из нуклеиновой кислоты и нескольких белков, сборка состоит из упорядоченного взаимодействия этих молекул. У сложно устроенных вирусов сборка дочерних популяций протекает многоступенчато. Взаимодействие нуклеиновых кислот с внутренними и оболочечными белками приводит к образованию нуклеокапсидов, или сердцевин. В процессе образования «одетых» вирусов полные нуклеокапсиды упорядоченно выстраиваются с внутренней стороны клеточной мембраны под участками, модифицированными оболочечными вирусными белками (М-белками). При нарушениях процесса самосборки могут образовываться пустые капсиды либо комплексы нуклеиновых кислот с внутренними белками.

Высвобождение дочерних вирионов — конечная стадия репродуктивного цикла. Вирусы, лишённые суперкапсида, и поксвирусы обычно высвобождаются быстро; выход дочерних популяций сопровождается разрушением цитоплазматической мембраны (ЦПМ) и лизисом клетки. Вирусы, содержащие суперкапсид, высвобождаются медленнее. Модифицированные участки мембраны с заключёнными в них вирионами выпячиваются наружу и затем отпочковываются. Принцип высвобождения дочерних популяций почкованием во многом сходен с процессами, направленными на отторжение непригодного для клетки материала или обновление клеточных мембран. При высвобождении почкованием изменённая клетка иногда может сохранять жизнеспособность.

Бактерии

Бактерии [от греч. bacterion, уменьш. от baktron, трость, посох] — представители царства Procariotae, включающего бактерии и сине-зелёные водоросли. Бактерии крупнее вирусов, большинство из них можно изучать светооптической микроскопией. Прокариотическая клетка меньше эукариотической, ДНК в ней не окружена ядерной мембраной, а органеллы типа митохондрий и хлоропластов отсутствуют. Клетки бактерий окружены особо организованной клеточной стенкой, имеют ограниченное число отделов (компартментов) либо вообще лишены их (рис. 24). Они также имеют различия в синтезе ДНК, белков и продуктов клеточной стенки (табл. 21). Все известные бактерии разделяют на архебактерии (то есть древние бактерии) и эубактерии (к которым относят большинство современных видов).

Ы Вёрстка, Рисунок 02 - 04

Рис. 24. Основные различия между прокариотической и эукариотической клетками. Бактериальная (прокариотическая) клетка (А) окружена клеточной стенкой (КС). Цитоплазма обильно насыщена рибосомами (Р). Молекула ДНК обычно расположена в центре клетки. Цитоплазма эукариотической клетки (Б) окружена цитоплазматической мембраной (ЦПМ), включает митохондрии (М), вакуоли (В), шероховатую эндоплазматическую сеть с рибосомами (ШЭС), гладкую эндоплазматическую сеть (ГЭС), запасные гранулы (ЗГ) и ядро (Я).

Таблица 21. Основные различия клеток прокариотов (эубактерий) и эукариотов

Признак Прокариотическая клетка Эукариотическая клетка
Размер 1–10 мкм 10–100 мкм
Анаэробное дыхание Возможно Обычно отсутствует
Фиксация азота Возможна Невозможна
Мембранные структуры Отсутствуют Имеются
Генетический материал
Расположение Нет мембраны, ограничивающей его от цитоплазмы Отграничен от цитоплазмы ядерной мембраной
Форма Кольцевая молекула ДНК Хромосома
Внехромосомная ДНК Располагается в плазмидах Располагается в митохондриях
Гистоны Отсутствуют Имеются
Тип деления Бинарный Митотический
Синтез белка
Рибосомы 70 S (50 S и 30 S субъединицы) 80 S (60 S и 40 S субъединицы)
Место синтеза Рибосомы, свободно расположенные в цитоплазме Рибосомы в составе шероховатой эндоплазматической сети
Клеточная стенка*
Структурные элементы Образована пептидогликанами Содержит хитин или целлюлозу
Стеролы Отсутствуют Имеются

Примечание. * У эукариот ЦПМ.

Архебактерии [от греч. archе, начало + бактерия] обитают в биотопах с экстремальными условиями. Вероятно, эти биотопы напоминают существовавшие на заре развития жизни на Земле. К архебактериям относят метанобразующие бактерии, экстремально галофильные бактерии (растут в присутствии 12–32% NaCl) и термоацидофильные бактерии (растут при 75–90 °С и низком рН). Возможно, большинство архебактерий — потомки пробактерий, «научившихся» использовать неорганические доноры и акцепторы протонов. От эубактерий их отличают различия в строении клеточной стенки (отсутствие пептидогликанового слоя), рибосом, рибосомальных ферментов и транспортных РНК (тРНК). Поэтому архебактерии резистентны ко многим антибиотикам, к которым чувствительны эубактерии. Поскольку среди архебактерий патогенных для человека видов не обнаружено, их изучение не входит в задачи медицинской микробиологии.

Эубактерии. Большинство эубактерий — свободноживущие сапрофиты, но среди них имеются виды, вызывающие заболевания у растений и животных. Значительная часть патогенных бактерий способна покрывать свои энергетические и метаболические потребности путём расщепления различных субстратов. Их можно выращивать на синтетических средах.

Форма бактерий

Отдельным видам бактерий с достаточным постоянством присущи определённые форма и размер. Длина бактериальных клеток варьирует от 0,1–0,2 мкм (виды Mycoplasma) до 10–15 мкм (виды Clostridium), толщина — от 0,1 до 2,5 мкм. Средние размеры бактерий — 2–3ѓ0,3–0,8 мкм. Выделяют три основные формы бактерий — шаровидные (или овальные), палочковидные (цилиндрические) и извитые (спиралевидные), хотя известны и бактерии, имеющие иную форму (например, нитевидную, треугольную или звёздчатую). Подавляющее большинство бактерий, вызывающих заболевания человека, имеют шаровидную (кокки) и палочковидную формы (рис. 25).

Ы Вёрстка, Рисунок 02 - 05

Рис. 25. Типичные формы бактериальных клеток.

Шаровидные бактерии, или кокки. Большинство кокков [от греч. kokkos, ягода, зерно] имеют шаровидную или овальную форму, клетки некоторых видов могут быть эллипсоидными, бобовидными или ланцетовидными. По характеру расположения клеток в мазках выделяют микрококки (делятся в одной плоскости и располагаются беспорядочно); парные, или диплококки (делятся в одной плоскости, в мазках обычно располагаются парами; имеют бобовидную или ланцетовидную формы); стрептококки (делятся в одной плоскости; связь между клетками обычно сохраняется, что придаёт им в мазках форму бус или чёток, располагающихся цепочками), стафилококки (делятся в нескольких плоскостях, образуя бесформенные скопления, напоминающие виноградные гроздья); тетракокки (делятся в двух перпендикулярных плоскостях, в мазках располагаются по четыре в форме квадратов) и сарцины (делятся в трёх перпендикулярных плоскостях, в мазках располагаются «этажами» в форме «тюков» или «пакетов» по 8, 16, 32 и более клеток).

Палочковидные бактерии

Термином «бактерия» обозначают в широком смысле всех представителей царства прокариот, а в узком — палочковидные споронеобразующие бактерии. Спорообразующие палочковидные бактерии подразделяют на бациллы [от лат. bacillus, палочка] и клострЋдии [от греч. klІster, веретено]. Это разделение было основано на способности центрально расположенных спор клостридий деформировать материнскую клетку, придавая им форму веретена. Позднее были открыты виды клостридий, споры которых располагаются на концах клетки, но это название закрепилось за отдельным видом. Споры бацилл не деформируют клетки. Размеры палочковидных бактерий могут быть менее 1 мкм (например, виды Brucella) либо превышать 3 мкм (например, виды Clostridium). По толщине они могут быть тонкими (виды Mycobacterium) или толстыми (виды Clostridium). Полюса клеток могут быть заострены (виды Fusobacterium), утолщены (виды Corynebacterium), «обрублены» под прямым углом (Bacillus anthracis) либо закруглены (виды Escherichia); иногда они могут принимать овоидную (Yersinia pestis) или кокковидную форму (Francisella tularensis). В мазках палочковидные бактерии могут располагаться одиночно и беспорядочно (монобактерии); попарно по одной линии (диплобактерии) и в виде цепочек различной длины (стрептобактерии).

Извитые бактерии подразделяют на две основные группы: вибрионы и спирохеты. У вибрионов и сходных по форме бактерий изогнутость тела не превышает четверти оборота спирали (например, у кампилобактер). Спирохеты имеют изгибы, равные одному или нескольким оборотам спирали (например, возбудитель сифилиса).



Поделиться:


Последнее изменение этой страницы: 2016-09-20; просмотров: 475; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.137.161.222 (0.03 с.)