Пять источников электроэнергии 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Пять источников электроэнергии



Пять источников электроэнергии

Электрической станцией называ­ется комплекс оборудования и уст­ройств, назначением которого является преобразование энергии природ­ного источника в электрическую энер­гию (и теплоту).

Электрические станции разделяют по следующим признакам:

1) по виду используемой энер­гии на:

гидроэлектростанции (ГЭС), в ко­торых электрическая энергия выраба­тывается за счет механической энер­гии воды рек;

тепловые электростанции (ТЭС), использующие органическое топливо;

атомные электростанции (АЭС), в которых используется ядерное го­рючее;

2) по виду отпускаемой энер­гии:

тепловые электростанции, отпуска­ющие потребителям только электро­энергию, — конденсационные элек­тростанции (КЭС);

тепловые электростанции, отпускающие электрическую и тепловую энер­гию, — теплоэлектроцентрали (ТЭЦ); источником отпускаемого тепла является отработавший пар или отработав­ший газ тепловых двигателей;

3) по виду теплового двигателя: электростанции с паровыми турби­нами — паротурбинные ТЭС, кото­рые являются основным видом элек­тростанций в нашей стране и за ру­бежом;

электростанции с газовыми тур­бинами — газотурбинные ТЭС;

электростанции с парогазовыми установками — парогазовые ТЭС;

электростанции с двигателями внутреннего сгорания — ДЭС;

4) по назначению электростанций: районные электростанции (общего пользования), обслуживающие все ви­ды потребителей энергосистемы и яв­ляющиеся самостоятельными произ­водственными предприятиями: район­ные конденсационные электростанции (ГРЭС), районные теплоэлектроцен­трали (ТЭЦ), коммунальные электро­станции;

промышленные электростанции, входящие в состав производственных предприятий и предназначенные в ос­новном для энергоснабжения пред­приятий, а также прилегающих к ним городских и сельских районов.

Паротурбинные электростанции разделяют также и по другим, менее характерным признакам, а именно:

1) по общей и единичной мощности агрегатов: малой мощности — с агре­гатами до 25 МВт; средней мощности —с агрегатами 50—100 МВт; большой мощности — с агрегатами более 200 МВт. Такое разделение является условным, так как мощности ТЭС и ее агрегатов неизменно возрастают;

2) по начальным параметрам пара: низкого давления — до 3,92 МПа; высокого давления — до 12,7 МПа; сверхвысокого давления — до 23,7 МПа. Такое разделение также условно, так как параметры пара все время повышаются;

3) по технологической схеме сое­динений парогенераторов и турбогене­раторов: блочные электростанции, на которых каждый турбоагрегат при­ соединен к одному определенному парогенератору; неблочные электро­станции, в которых турбоагрегат соединен главными трубопроводами со всеми парогенераторами электростан­ции или ее части (очереди).

 

Основное Оборудование ТЭЦ

Теплоэлектроцентраль (ТЭЦ), тепловая электростанция, вырабатывающая не только электрическую энергию, но и тепло, отпускаемое потребителям в виде пара и горячей воды.

Использование в практических целях отработавшего тепла двигателей, вращающих электрические генераторы, является отличительной особенностью ТЭЦ и носит название теплофикация.

Исходный источник энергии на ТЭЦ — органическое топливо (на паротурбинных и газотурбинных ТЭЦ) либо ядерное топливо (на планируемых атомных ТЭЦ).

Различают ТЭЦ промышленного типа — для снабжения теплом промышленных предприятий, и отопительного типа — для отопления жилых и общественных зданий, а также для снабжения их горячей водой. Тепло от промышленных ТЭЦ передаётся на расстояние до нескольких км (преимущественно в виде тепла пара), от отопительных — на расстояние до 20—30 км (в виде тепла горячей воды).

Основное оборудование паротурбинных ТЭЦ — турбоагрегаты, преобразующие энергию рабочего вещества (пара) в электрическую энергию, и котлоагрегаты, вырабатывающие пар для турбин. В состав турбоагрегата входят паровая турбина и синхронный генератор. Паровые турбины, используемые на ТЭЦ, называются теплофикационными турбинами (ТТ). Среди них различают ТТ: с противодавлением, обычно равным 0,7—1,5 Мн/м2 (устанавливаются на ТЭЦ, снабжающих паром промышленные предприятия); с конденсацией и отборами пара под давлением 0,7— 1,5 Мн/м2 (для промышленных потребителей) и 0,05—0,25 Мн/м2 (для коммунально-бытовых потребителей); с конденсацией и отбором пара (отопительным) под давлением 0,05—0,25 Мн/м2.

Отработавшее тепло ТТ с противодавлением можно использовать полностью. Однако электрическая мощность, развиваемая такими турбинами, зависит непосредственно от величины тепловой нагрузки, и при отсутствии последней (как это, например, бывает в летнее время на отопительных ТЭЦ) они не вырабатывают электрической мощности. Поэтому ТТ с противодавлением применяют лишь при наличии достаточно равномерной тепловой нагрузки, обеспеченной на всё время действия ТЭЦ (то есть преимущественно на промышленных ТЭЦ).

 

У ТТ с конденсацией и отбором пара для снабжения теплом потребителей используется лишь пар отборов, а тепло конденсационного потока пара отдаётся в конденсаторе охлаждающей воде и теряется. Для сокращения потерь тепла такие ТТ большую часть времени должны работать по "тепловому" графику, то есть с минимальным "вентиляционным" пропуском пара в конденсатор

Электрическую мощность теплофикационных турбоагрегатов (В отличие от конденсационных) выбирают предпочтительно не по заданной шкале мощностей, а по количеству расходуемого ими свежего пара.

Тепловая схема ТЭЦ с противодавлением турбин показана на рис. 1, где:

1 – паровой котел, 2 – паровая турбина, 3. электрический генератор, 4 –

потребитель теплоты, 5 – конденсатный насос, 6 – деаэратор, 7 – питательный

насос.

Тепловая схема ТЭЦ с теплофикационными турбинами показана на рис.

2, где 1, 2, 3, 4 соответствуют обозначениям рис. 17, 5 – сетевой насос, 6-

конденсатор, 7 – конденсатный насос, 8 – деаэратор, 9 – питательный насос.

 

Тепловая нагрузка на отопительных ТЭЦ неравномерна в течение года. В целях снижения затрат на основное энергетическое оборудование часть тепла (40—50%) в периоды повышенной нагрузки подаётся потребителям от пиковых водогрейных котлов.

На ТЭЦ используют твёрдое, жидкое или газообразное топливо. Вследствие большей близости ТЭЦ к населённым местам на них шире (по сравнению с ГРЭС) используют более ценное, меньше загрязняющее атмосферу твёрдыми выбросами топливо — мазут и газ. Для защиты воздушного бассейна от загрязнения твёрдыми частицами используют (как и на ГРЭС) золоуловители (см. Газов очистка), для рассеивания в атмосфере твёрдых частиц, окислов серы и азота сооружают дымовые трубы высотой до 200—250 м. ТЭЦ, сооружаемые вблизи потребителей тепла, обычно отстоят от источников водоснабжения на значительном расстоянии. Поэтому на большинстве ТЭЦ применяют оборотную систему водоснабжения с искусственными охладителями — градирнями. Прямоточное водоснабжение на ТЭЦ встречается редко.

На газотурбинных ТЭЦ в качестве привода электрических генераторов используют газовые турбины. Теплоснабжение потребителей осуществляется за счёт тепла, отбираемого при охлаждении воздуха, сжимаемого компрессорами газотурбинной установки, и тепла газов, отработавших в турбине. В качестве ТЭЦ могут работать также парогазовые электростанции (оснащенные паротурбинными и газотурбинными агрегатами) и атомные электростанции.

 

Виды плотин горных рек

Гидравлические электростанции (ГЭС)- это комплекс гидротехнических сооружений и энергетического оборудования, с помощью которых энергия концентрированного водного потока с сосредоточенным напором преобразуется в электрическую энергию. ГЭС, как правило, сооружаются не только для выработки электрической энергии, но и для одновременного решения комплекса задач улучшения судоходства, ирригации в составе единого водохозяйственного комплекса.

Гидроэлектростанция состоит из двух частей:

· гидротехнических сооружений, обеспечивающих концентрацию потока воды;

· энергетического оборудования, преобразующего энергию движущейся под напором воды в электрическую. Преобразование энергий осуществляется при помощи гидротурбины.

Существуют две схемы создания напора гидротехническими сооружениями:

· плотинная

· деривационная

На равнинных реках, уклоны которых незначительны, концентрация гидроэнергии выполняется главным образом по плотинной схеме. На горных реках с большими естественными уклонами используются деривационные схемы, основанные на применении искусственного водовода, выполненного в виде открытого канала, туннеля или трубопровода.

На деривационных ГЭСстанционный узел расположен вдали от плотины и других сооружений, образующих головной узел. Плотина головного узла создает только часть полезного напора ГЭС, основная же часть напора создается вследствие расположения станционного узла на более низкой отметке. Длина обводного канала (деривации) достигает 20-30 км, а в установках более 100 км. К турбинам вода из водохранилища поступает, проходя через водоприемник, деривацию и напорные трубопроводы. Для смягчения гидравлических ударов при некоторых режимах работы ГЭС сооружается уравнительный резервуар.

Гидроэлектростанции также разделяются в зависимости от принципа использования природных ресурсов, и, соответственно, образующейся концентрации воды. Здесь можно выделить следующие ГЭС:

  • русловые и приплотинные ГЭС. Это наиболее распространенные виды гидроэлектрических станций. Напор воды в них создается посредством установки плотины, полностью перегораживающей реку, или поднимающей уровень воды в ней на необходимую отметку. Такие гидроэлектростанции строят на многоводных равнинных реках, а также на горных реках, в местах, где русло реки более узкое, сжатое.
  • плотинные ГЭС. Строятся при более высоких напорах воды. В этом случае река полностью перегораживается плотиной, а само здание ГЭС располагается за плотиной, в нижней её части. Вода, в этом случае, подводится к турбинам через специальные напорные тоннели, а не непосредственно, как в русловых ГЭС.
  • деривационные гидроэлектростанции. Такие электростанции строят в тех местах, где велик уклон реки. Необходимая концентрация воды в ГЭС такого типа создается посредством деривации. Вода отводится из речного русла через специальные водоотводы. Последние — спрямлены, и их уклон значительно меньший, нежели средний уклон реки. В итоге вода подводится непосредственно к зданию ГЭС. Деривационные ГЭС могут быть разного вида — безнапорные или с напорной деривацией. В случае с напорной деривацией, водовод прокладывается с большим продольным уклоном. В другом случае в начале деривации на реке создается более высокая плотина, и создается водохранилище — такая схема еще называется смешанной деривацией, так как используются оба метода создания необходимой концентрации воды.

Тип и конструкция Плотины. определяются её размерами, назначением, а также природными условиями и видом основного строительного материала. По назначению различают П. водохранилищные и П. водоподъёмные (предназначенные лишь для повышения уровня верхнего бьефа). По величине напора П. условно подразделяют на низконапорные (с напором до 10 м), средненапорные (от 10 до 40 м) и высоконапорные (более 40 м). В зависимости от роли, выполняемой в составе гидроузла, П. может быть: глухой, если служит лишь преградой для течения воды; водосливной, когда предназначена для сброса избыточных расходов воды и оборудована поверхностными водосливными отверстиями (открытыми или с затворами) или глубинными водоспусками; станционной, если имеет водозаборные отверстия (с соответствующим оборудованием) и водоводы, питающие турбины ГЭС. По основному материалу, из которого возводят П., различают земляные плотины (См. Земляная плотина), каменные плотины (См. Каменная плотина), бетонные плотины (См. Бетонная плотина), деревянные плотины (См. Деревянная плотина).

Бетонные П. обычно классифицируют по конструктивному признаку в зависимости от условий работы на Сдвиг; соответственно этому различают 3 основных типа П. (рис. 2) — гравитационные плотины (См. Гравитационная плотина), арочные плотины (См. Арочная плотина), контрфорсные плотины (См. Контрфорсная плотина). Осн. материалом для современных бетонных П. (преимущественно гравитационных) служит Гидротехнический бетон.

Распространённая в практике гидротехнического строительства низконапорная бетонная Водосливная плотина, возводимая на нескальном основании и предназначенная для пропуска больших расходов воды

Особый тип водоподпорного сооружения — разборная судоходная П. Для её возведения в летнюю межень на плоском флютбете устанавливают контрфорсы из стальных ферм, по ним прокладывают мосты, на которые опирают затворы простейшей конструкции. П. подпирает уровень верхнего бьефа, а суда и плоты идут через шлюз. В многоводный период затворы и мосты убирают, фермы контрфорсов укладывают на флютбет, открывая судам и плотам путь через П.

 
 

Виды турбин

Гидроэлектростанция (ГЭС) — комплекс сооружений и оборудования, посредством которых энергия потока воды преобразуется в электрическую энергию.

Мощность потока воды, протекающего через некото­рое сечение — створ, определяется расходом воды Q, вы­сотой между уровнем воды в верхнем по течению бас­сейне (верхнем бьефе) и уровнем воды в нижнем по те­чению бассейне (нижнем бьефе) в месте сооружения
плотины. Разность уровней верхнего и нижнего бассей­нов называется напором. Мощность потока в створе (кВт) можно определить посредством расхода (м3/с) и
напора (м):

P=9,81QH.

В двигателях ГЭС можно использовать только часть мощности потока воды в створе из-за неизбежных потерь мощности в гидротехнических сооружениях, турбинах и генераторах, учитываемых коэффициентом полезного действия η. Таким образом, приближенно мощность ГЭС

P=9,81QHη.

Напор Н увеличивают на равнинных реках с помощью плотины (рис. 2.17, а), а в горных местностях строят спе­циальные обводные каналы, называемые деривационны­ми

В гидравлических турбинах преобразуется энергия воды в механическую энергию вращения вала турбины. Турбина называется активной, если используется дина­мическое давление воды, и реактивной, если использует­ся статическое давление при реактивном эффекте.

В ковшовой активной турбине по­тенциальная энергия гидростатического давления в су­живающейся насадке — сопле — полностью превращает­ся в кинетическую энергию движения воды.(Рабочее ко­лесо турбины выполнено в виде диска, по окружности которого расположены ковшеобразные лопасти. Вода, огибая поверхности лопастей, меняет на­правление движения. При этом возникают центробежные силы, действующие на поверхности лопастей, и энергия движения воды преобразуется в энергию вращения ко­леса турбины.

У радиально-осевых турбин лопасти рабочего колеса имеют сложную кривизну, поэтому вода, поступа­ющая с направляющего аппарата, постепенно меняет на­правление с радиального на осевое. Такие турбины ис­пользуют в широком диапазоне напоров от 30 до 600 м. В настоящее время созданы уникальные раднально-осевые турбины мощностью 700 МВт.

Пропеллерные турбины обладают простой конструкцией и высоким КПД, однако у них с изменени­ем нагрузки КПД резко уменьшается.

У поворотно-лопастных гидротурбин в отличие от пропеллерных лопасти рабочего колеса пово­рачиваются при изменении режима работы для поддер­жания высокого значения КПД.

Двухперовые турбины имеют спаренные ра­бочие лопасти, что позволяет повысить расход воды. Ши­рокое применение их ограничено конструктивными слож­ностями. Сложная конструкция свойственна также диагональным турбинам, у которых рабочие лопасти поворачиваются относительно своих осей.

 

Гидрогенератор – это электрическая машина, преобразующая механическую энергию вращения в электрическую.

На ГЭС применяются в качестве генераторов синхронные машины трехфазного переменного тока.

Вращающаяся часть простейшего генератора – ротор – представляет собой двухполюсный электромагнит, магнитное поле которого создается при протекании по обмотке возбуждения постоянного тока от независимого источника. Этот ток подается на ротор через неподвижные щетки, прижатые к вращающимся вместе с ротором контактным кольцам. На статоре размещена силовая обмотка, которая в простейшем случае состоит из одного витка.

Ротор, жестко связанный с валом турбины, вращается с постоянной частотой. За счет магнитного потока ротора в витке обмотки наводится переменная электродвижущая сила. Если к выводам обмотки статора подключить нагрузки, то по обмотке потечет ток, на выводах появится напряжение, которое также будет переменным, изменяющимся по синусоиде.

Основные конструктивные части гидрогенератора – ротор и статор. Обод ротора выполняется в виде металлического кольца с прикрепленными к нему полюсами. В гидрогенераторах полюсы расположены вплотную друг к другу и образуют сплошную наружную цилиндрическую поверхность.

Статор гидрогенератора состоит из сердечника и корпуса. Сердечник является магнитопроводом и представляет собой массивное стальное кольцо, собранное из тонких (до 0,5 мм) листов электротехнической стали. На внутренней поверхности кольца устроены пазы, в которых размещаются стержни силовой обмотки. Сердечник заключен в сварной металлический корпус, крепящийся к строительным конструкциям здания ГЭС. Для возможности перевозки статор крупных гидрогенераторов разделен на несколько (обычно шесть) сегментов, которые соединяются при монтаже.

Ротор – это самый крупный и тяжелый узел генератора, его диаметр может достигать 15 м, масса 1000 т и более. Ротор состоит из обода, полюсов, спиц и втулки. Обод представляет собой массивное кольцо, собранное из большого количества стальных сегментов толщиной 3 – 5 мм. На внешней поверхности обода устраиваются пазы, в которые вставляются и расклиниваются хвостовики металлических сердечников полюсов с надетыми на них катушками обмотки возбуждения. Внутренняя сторона обода соединяется сварными спицами с втулкой, представляющей собой крупную деталь, соединяющую ротор с валом.

Виды подшипников

Генераторы с вертикальным валом подразделяются на два основных типа — подвесные и зонтичные, отличающиеся друг от друга расположением подпятника относительно ротора. При частотах вращения до 200 об/мин гидрогенераторы выполняются преимущественно в зонтичном исполнении, свыше 200 об/мин — в подвесном. При частотах вращения свыше 250 об/мин вертикальные гидрогенераторы выполняются исключительно в подвесном исполнении.

Подшипники передают на фундамент радиальные нагрузки от вала. Подшипник состоит из полированной стальной втулки и прижатых к ней сегментов, которые так же, как в подпятнике, залиты баббитом и помещены в охлаждаемую масляную ванну.

Обычно в генераторе устанавливаются два направляющих подшипника, из которых нижний встроен в нижнюю крестовину, а верхний — в верхнюю грузонесущую крестовину. Если расстояние между верхним подшипником генератора и подшипником турбины относительно невелико и жесткость вала достаточна, нижний генераторный подшипник может не устанавливаться.

 

Мини ТЭЦ и ГЭС

Мини-ТЭЦ (малая теплоэлектроцентраль) — теплосиловые установки, служащие для совместного производства электрической и тепловой энергии в агрегатах единичной мощностью до 25 МВт, независимо от вида оборудования.

Отличительной особенностью мини-ТЭЦ является более экономичное использование топлива для произведенных видов энергии в сравнении с общепринятыми раздельными способами их производства. Это связано с тем, что электроэнергия в масштабах страны производится в основном в конденсационных циклах ТЭС и АЭС, имеющих электрический КПД на уровне 30-35 % при отсутствии теплового потребителя. Фактически такое положение дел определяется сложившимся соотношением электрических и тепловых нагрузок населенных пунктов, их различным характером изменения в течение года, а также невозможностью передавать тепловую энергию на большие расстояния в отличие от электрической энергии.

Модуль мини-ТЭЦ включает газопоршневой, газотурбинный или дизельный двигатель, генератор электроэнергии, теплообменник для утилизации тепла от воды при охлаждении двигателя, масла и выхлопных газов. К мини-ТЭЦ обычно добавляют водогрейный котел для компенсации тепловой нагрузки в пиковые моменты.

Мини ТЭЦ состоит из следующих основных узлов и агрегатов:

силовая установка (двигатель) генератора;

сам генератор;

котлы- утилизаторы, позволяющие утилизировать отработанные газы;

теплообменники, которые способствуют сбору и переработке тепла системы охлаждения двигателя;

технологически необходимые катализаторы;

различные системы управления выработки энергии и тепла, а также контроля за работой всего оборудования.

Основное предназначение мини-ТЭЦ является выработка электрической и тепловой энергии из различных видов топлива.

Концепция строительства мини-ТЭЦ в непосредственной близости к потребителю имеет ряд преимуществ (в сравнении с большими ТЭЦ):

позволяет избежать затрат на строительство дорогостоящих и опасных высоковольтных линий электропередач (ЛЭП);

исключаются потери при передаче энергии;

отпадает необходимость финансовых затрат на выполнение технических условий на подключение к сетям централизованного электроснабжения;

бесперебойное снабжение электроэнергией потребителя;

электроснабжение качественной электроэнергией, соблюдение заданных значений напряжения и частоты;

возможно, получение прибыли.

Основное преимущество мини-ТЭЦ — близость к потребителям тепловой энергии. Снижаются или отпадают проблемы с теплосетями (трубопроводы, обеспечивающие подачу тепловой энергии от ТЭЦ к потребителям). В случае аварии, разрыва в теплосети возникают большие проблемы: разрытие грунта, временное отчуждение территории для ремонта теплосети, как правило прекрывается движение автотранспорта. По советским нормативам теплосети подлежали замене через 20-30 лет. На основе двигателей внутреннего сгорания существует оборудование «мини-ТЭЦ», позволяющее обеспечивать электро- и теплоснабжение отдельных домов, в том числе и индивидуальных домов (коттеджей).

Топливо для мини-ТЭЦ

Виды используемого топлива

газ: природный газ магистральный, природный газ сжиженный и другие горючие газы;

жидкое топливо: нефть, мазут, дизельное топливо, биодизель и другие горючие жидкости;

твердое топливо: уголь, древесина, торф и прочие разновидности биотоплива.

Наиболее эффективным и недорогим топливом в России является магистральный природный газ, а также попутный газ.

Малая гидроэлектростанция или малая ГЭС (МГЭС) — гидроэлектростанция, вырабатывающая сравнительно малое количество электроэнергии. Общепринятого для всех стран понятия малой гидроэлектростанции нет, в качестве основной характеристики таких ГЭС принята их установленная мощность. Чаще к малым гидроэлектростанциям относят гидроэнергетические установки, установленная мощность которых не превышает 5 МВт (Австрия, Германия, Польша, Испания и др.). В Латвии и Швеции, малыми считают ГЭС с установленной мощностью до 2 МВт, в некоторых других странах — до 10 МВт (Греция, Ирландия, Португалия). Также в соответствии с определением Европейской Ассоциации Малой Гидроэнергетики считаются малыми ГЭС до 10 МВт. [1]

Время от времени происходят смены классификации: в США, где были принятые меры стимулирования развития малой гидроэнергетики (путём упрощения лицензионной процедуры оформления проектов здания малых ГЭС), изначально к ним относили ГЭС с установленной мощностью до 5 МВт, затем верхняя граница был увеличена до 15 МВт, а в 1980 их максимальная установленная мощность была ограничена 30 МВт. В СССР согласно СНиП 2.06.01-86 к малым относились ГЭС, с установленной мощностью до 30 МВт при диаметре рабочего колеса турбины до 3 м. Среди малых ГЭС условно выделяют микро-ГЭС, установленная мощность которых не превышает 0,1 МВт.

Малая гидроэнергетика является прекрасной альтернативой централизованному энергоснабжению для удаленных и труднодоступных районов и районов с ограниченной передаточной мощностью ЛЭП.

Использование мини-ГЭС позволяет зафиксировать стоимость энергоресурсов на приемлемом для потребителя уровне, решает проблему перебоев электроэнергии.

Преимущества микро- и мини-ГЭС:

отсутствует нарушение природного ландшафта и окружающей среды в процессе строительства и на этапе эксплуатации;

отсутствует отрицательное влияние на качество воды: она не теряет первоначальных природных свойств и может использоваться для водоснабжения населения;

практически отсутствует зависимость от погодных условий;

обеспечивается подача потребителю дешевой электроэнергии в любое время года;

отсутствуют проблемы, характерные крупной гидроэнергетике (строительство сложных и дорогостоящих гидросооружений, затопление местности и т.п.).

Приливные электростанции

Приливные электростанции (ПЭС) выгодно отличаются от речных ГЭС тем, что их работа определяется космическими явлениями и не зависит от природных условий, определяемых целым рядом случайных факторов.

Наиболее существенный недостаток ПЭС — неравно­мерность их работы. Неравномерность приливной энергии в течение лунных суток и лунного месяца, отлича­ющихся от солнечных, не позволяет систематически ис­пользовать ее в периоды максимального потребления в системах. Можно компенсировать неравномерность ра­боты ПЭС, совместив ее с ГАЭС. В то время, когда име­ется избыточная мощность ПЭС, ГАЭС работает в насос­ном режиме, потребляя эту мощность и перекачивая воду в верхний бассейн. Во время спадов в работе ПЭС в генераторном режиме работает ГАЭС, выдавая электро­энергию в систему. В техническом отношении такой npоект удачен, но дорогостоящ, так как требуется большая установленная мощность электрических машин.

Также удачно ПЭС может сочетаться с речной ГЭС, имеющей водохранилище. При совместной работе ГЭС увеличивает мощность при спаде мощности ПЭС и ее ос­тановке; в то время как ПЭС работает с достаточно большой мощностью, ГЭС запасает воду в водохранили­ще. Таким образом, можно уменьшить как суточную, так и сезонную неравномерность работы ПЭС.

ПЭС работают в условиях быстрого изменения напо­ра, поэтому их турбины должны иметь высокие КПД при переменных напорах. В настоящее время создана доста­точно совершенная и компактная горизонтальная турбина двойного действия. Электрический генератор власть деталей турбины заключены в водонепроницаемую кап­сулу и весь гидроагрегат погружен в воду.

В течение нескольких десятков лет в бывшем СССР велись научные и проектные работы по приливной энергетике. К настоящему времени выполнены проработки по Лумбовской, Пенжинской, Мезенской и Тугурской ПЭС.

С 1968 г работает экспериментальная Кислогубская ПЭСмощностью 400кВт.

За рубежом работают три приливных станции:

· ПЭСРанс мощностью 240 МВт во Франции (построена в 1967 г и имеет 24 агрегата).

· ПЭСЦзянсян мощностью 32 МВт в Китае (пуск шести агрегатов осуществлен в период 1980…1985 гг).

· ПЭСАннаполис мощностью 196 МВт в Канаде (построена в 1984 г, имеет 1 агрегат).

Кроме того, в Китае построены десятки микро и мини ПЭС, являющихся элементами комплексов для осуществлении проектов обводнения, осушения, судоходства и т.д.

 

Рис.20. Однобассейновая ПЭСдвухстороннего действия:

Равнинные ГЭС

Гидравлические электростанции (ГЭС)- это комплекс гидротехнических сооружений и энергетического оборудования, с помощью которых энергия концентрированного водного потока с сосредоточенным напором преобразуется в электрическую энергию. ГЭС, как правило, сооружаются не только для выработки электрической энергии, но и для одновременного решения комплекса задач улучшения судоходства, ирригации в составе единого водохозяйственного комплекса.

Существуют две схемы создания напора гидротехническими сооружениями:

· плотинная

· деривационная

На равнинных реках, уклоны которых незначительны, концентрация гидроэнергии выполняется главным образом по плотинной схеме. На горных реках с большими естественными уклонами используются деривационные схемы, основанные на применении искусственного водовода, выполненного в виде открытого канала, туннеля или трубопровода.

Плотинные ГЭСподразделяются на два типа:

· русловые (рис.63);

· приплотинные (рис.64).

Плотинные ГЭСстроятся в пределах речного русла и только отдельные их сооружения частично выходят на берег. Эти ГЭС используются при сравнительно небольших напорах, не превышающих 30 м. Необходимый напорводы создается бетонной плотиной, водосборными сооружениями и одной из стен ГЭС, которая примыкает к плотине и является ее продолжением (рис. 63).

При напорах свыше 30 м здание ГЭСсооружают за плотиной и такие ГЭС называют приплотинными. Весь напорв этом случае воспринимается плотиной.

Влияние искуственных водохранилищ может быть положительным и отрицательным. Положительное влияние состоит в возможности орошения земельных угодий из созданных водохранилищ. В то же время нередки естественные неуправляемые процессы, приводящие к очень неблагоприятным последствиям. Например, создание крупных водохранилищ в равнинных районах приводит к подъему грунтовых вод и, как следствие, к заболачиванию местности, а также подтоплению зданий и сооружений и связанному с этим ухудшению санитарно -эпидемиологических условий местности. Увеличение давления на дно реки может приводить к созданию условий для повышения сейсмической активности в регионе. Вследствие увеличения зеркала водной поверхности резко возрастают потери воды на испарение. Частые колебания уровня воды в водохранилище приводят к переформированию его берегов и дна, сопровождаются образованием подводных отмелей, что неблагоприятно сказывается на условиях судоходства.

Создание водохранилищ приводит к изменению температурного режима воды. Летом и осенью температура воды в водохранилище из-за значительного его объема становится ниже, чем в реке (нижнем бьефе). Это приводит к более раннему ледоставу, сокращает сроки навигации, неблагоприятно воздействует на фауну.

В районе водохранилища изменяется климат, повышается влажность воздуха, часто образуются туманы. При этом снижается среднегодовая сумма осадков, изменяется направление и скорость ветра, уменьшается амплитуда колебаний температуры в течение суток.

 

Рис.63. Схема приплотинной ГЭС:

 

Атомный реактор

Я́дерный реа́ктор — это устройство, в котором осуществляется управляемая цепная ядерная реакция, сопровождающаяся выделением энергии. Первый ядерный реактор построен в декабре 1942 года в США под руководством Э. Ферми.

Составными частями любого ядерного реактора являются: активная лона с ядерным топливом, обычно окружённая отражателем нейтронов, теплоноситель, система регулирования цепной реакции, радиан, защита, система дистанционного управления. Основной характеристикой ядерного реактора является его мощность. Мощность в 1 Мвт соответствует цепной реакции, в которой происходит 3*1016 актов деления в 1 сек.

Ядерная реакция протекает в активной зоне реактора, которая заполнена замедлителем и пронизана стержнями, содержащими обогащенную смесь изотопов урана с повышенным содержанием урана-235 (до 3 %). В активную зону вводятся регулирующие стержни, содержащие кадмий или бор, которые интенсивно поглощают нейтроны. Введение стержней в активную зону позволяет управлять скоростью цепной реакции.

Назначение паросепаратора

Большое значение сепарация пара имеет на АЭС, где из-за недопустимости высоких температур в реакторе вырабатывается насыщенный пар невысоких (по сравнению с тепловыми электростанциями) параметров. Сепарация может происходить в отдельном устройстве (например, в одноконтурной реакторной установке с реактором типа РБМК) или непосредственно в парогенераторе (в двухконтурной реакторной установке с реактором типа ВВЭР).

В паровых котлах паросепаратор устанавливается обычно на входном патрубке паропровода. Назначение паросепаратора также состоит в отделении капель воды для повышения его сухости. По способу отделения пара паросепараторы бывают центробежными и осадительными.

Классификация ядерных реакторов.

По назначению и мощности ядерные реакторы делятся на несколько групп:

1) экспериментальный реактор (критическая сборка), предназначенный для изучения различных физических величин, значение которых необходимо для проектирования и эксплуатации ядерных реакторов: мощность таких ядерных реакторов не превышает нескольких квт:

2) исследовательские реакторы, в которых потоки нейтронов и g-квантов, генерируемые в активной зоне, используются для исследований в области ядерной физики, физики твёрдого тела, радиационной химии, биологии, для испытания материалов, предназначенных для работы в интенсивных нейтронных потоках (в т. ч. деталей ядерного реактора), для производства изотопов. Мощность исследовательского ядерного реактора не превосходит 100 Мвт: выделяющаяся энергия, как правило, не используется. К исследовательским ядерным реакторам относится импульсный реактор:

3) изотопные ядерные реакторы, в которых потоки нейтронов используются для получения изотопов, в т. ч. Pu и 3Н для военных целей;

4) энергетические ядерные реакторы, в которых энергия, выделяющаяся при делении ядер, используется для выработки электроэнергии, теплофикации, опреснения морской воды, в силовых установках на кораблях и т. д. Мощность (тепловая) современного энергетического ядерного реактора достигает 3-5 Гвт.

Ядерные реакторы могут различаться также по виду ядерного топлива (естественный уран, слабо обогащённый, чистый делящийся изотоп), по его химическому составу (металлический U, UO2, UC и т. д.), по виду теплоносителя (Н2О, газ, D2O, органические жидкости, расплавленный металл), по роду замедлителя (С, Н2О, D2O, Be, BeO. гидриды металлов, без замедлителя). Наиболее распространены гетерогенные Ядерный реактор на тепловых нейтронах с замедлителями — Н2О, С, D2O и теплоносителями — Н2О, газ, D2O.

Схематическое устройство гетерогенного реактора на тепловых нейтронах

1 — управляющий стержень;

2 — биологическая защита;

3 — теплоизоляция;

4 — замедлитель;

5 — ядерное топливо;

6 — теплоноситель.

 

 

Газотурбинные установки

Газотурбинная электростанция — современная, высокотехнологичная установка, генерирующая электричество и тепловую энергию.



Поделиться:


Последнее изменение этой страницы: 2016-09-19; просмотров: 732; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.141.100.120 (0.106 с.)