Электропроводность жидких диэлектриков 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Электропроводность жидких диэлектриков



Электропроводность жидких диэлектриков зависит от многих факторов: строения молекул, температуры, наличия примесей, наличия крупных заряженных коллоидных частиц и других факторов.

Электропроводность неполярных жидкостей зависит от наличия диссоциированных примесей и влаги. В полярных жидкостях электропроводность создается кроме примесейдиссоциированными ионами самой жидкости. Полярные жидкости обладают повышенной проводимостью по сравнению с неполярными. С повышением диэлектрической проницаемости проводимость возрастает. Очистка жидкостей от примесей уменьшает их проводимость.

Удельная проводимость жидкого диэлектрика экспоненциально зависит от температуры и выражается уравнением

где А и a – постоянные, характеризующие жидкость.

Рост проводимости жидкости с ростом температуры вызывается уменьшением ее вязкости, приводящим к возрастанию подвижности ионов, и ростом степени диссоциации.

В области слабых полей ток в жидких диэлектриках описывается законом Ома. В отличие от газов в зависимости тока от напряжения жидкого диэлектрика обычно отсутствует участок насыщения, хотя он может появиться при высокой степени очистки жидкости. В области высоких полей, превышающих 10 – 100 МВ/м, закон Ома нарушается в результате увеличения числа ионов, движущихся под влиянием поля.

 

Электропроводность твердых диэлектриков

Обусловлена, как передвижением ионов самого диэлектрика, так и ионов примесей, а у некоторых материалов и наличием свободных электронов. Электронная электропроводность наблюдается при сильных электрических полях. При низких температурах передвигаются слабо закрепленные ионы и ионы примесей, а при высоких температурах движутся термически освобождаемые ионы кристаллической решетки. Ионная электропроводность, в отличие от электронной, сопровождается переносом вещества.

Температурная зависимость удельной проводимости твердых диэлектриков описывается выражением

где W – энергия активации носителей заряда, k – постоянная Больцмана.

Для каменной соли энергия активации ионов натрия 0,85 эВ, ионов хлора 2,5 эВ, электронов 6,0 эВ.

Кристаллы с одновалентными ионами, например NaCl, обладают большей проводимостью по сравнению с кристаллами с многовалентными ионами MgO, Al2O3.

При больших напряженностях (выше 10 - 100 МВ/м) электрического поля в кристаллическом диэлектрике появляется значительный электронный ток, быстро возрастающий с ростом напряженности поля, приводящий к нарушению закона Ома.

 

Объемное и поверхностное сопротивление

 

Если к диэлектрику приложить постоянное напряжение, то по нему будет протекать ток утечки. Постоянная составляющая этого тока называется сквозным током и может быть представлена в виде двух составляющих: поверхностного сквозного тока, протекающего по тонкому электропроводящему слою влаги с растворенными в ней веществами, образовавшимся в результате взаимодействия со средой, и объемного сквозного тока, т.е. тока, проходящего через объем материала.

Этим двум составляющим тока соответствуют два сопротивления: поверхностное электрическое сопротивление диэлектрика Rs - отношение приложенного напряжения к поверхностному току, и объемное электрическое сопротивление диэлектрика R - отношение приложенного напряжения к объемному току. Соответственно, обратные этим сопротивлениям величины называются поверхностной и объемной проводимостями. Эти характеристики диэлектрика зависят как от материала диэлектрика, так и от геометрических размеров образца.

Более удобными в применении являются удельные поверхностное и объемное сопротивления. Удельное объемное сопротивление r [Ом·м]- это величина, равная отношению напряженности электрического поля E внутри образца к плотности тока J, проходящего через объем образца.

Под удельным поверхностным сопротивлением rs [Ом] понимают поверхностное сопротивление плоского участка поверхности твердого диэлектрика в форме квадрата при протекании электрического тока между двумя противоположными сторонами этого квадрата.

33)


ПРОБО́Й ДИЭЛЕ́КТРИКОВ, резкое возрастание электропроводности диэлектрика в электрическом поле, напряженность которого превышает т. н. электрическую прочностьи образование проводящего канала в диэлектрике. Пробой диэлектриков может сопровождаться их разрушением.

Минимальное приложенное к диэлектрику напряжение, приводящее к его пробою, называют пробивным напряжением Uпр.

Предпробойное состояние диэлектрика характеризуется резким возрастанием тока, отступлением от закона Ома в сторону увеличения проводимости.

Значение пробивного напряжения зависит от толщины диэлектрика h и формы электрического поля, обусловленной конфигурацией электродов и самого диэлектрика. Поэтому оно характеризует не столько свойства материала, сколько способность конкретного образца противостоять сильному электрическому полю. Для сравнения свойств различных материалов более удобной характеристикой является электрическая прочность. Электрической прочностью называют минимальную напряженность однородного электрического поля, приводящую к пробою диэлектрика:

Eпр = Uпр/ h.

Если пробой произошел в газообразном диэлектрике, то благодаря высокой подвижности молекул пробитый участок после снятия напряжения восстанавливает свои электрические свойства. Пробой твердых диэлектриков заканчивается разрушением изоляции. Однако разрушение материала можно предупредить, ограничив нарастание тока при пробое допустимым пределом.

Пробой диэлектриков может возникать в результате чисто электрических, тепловых, а в некоторых случаях и электрохимических процессов, обусловленных действием электрического поля. Механизмы пробоя диэлектриков зависят и от агрегатного состояния вещества.

Электрический пробой — лавинный пробой, связанный с тем, что носитель заряда на длине свободного пробега приобретает энергию, достаточную для ионизации молекулкристаллической решётки или газа и увеличивает концентрацию носителей заряда. При этом создаются свободные носители заряда (увеличивается концентрация электронов), которые вносят основной вклад в общий ток. Генерация носителей происходит лавинообразно. Различают поверхностный пробой и объёмный пробой диэлектриков. У полупроводников существует разновидность поверхностного пробоя, так называемый шнуровой эффект.

Пробой бывает и полезным, и вредным. К примеру, пробой изолятора на линии высокого напряжения является серьёзной аварийной ситуацией, а отсутствие пробоя бензовоздушной смеси на свече в двигателе внутреннего сгорания не позволяет запустить двигатель.

Электротепловой (сокращенно тепловой) пробой сводится к разогреву материала в электрическом поле до температур, соответствующих хотя бы местной потере им электроизоляционных свойств, связанной с чрезмерным возрастанием сквозной электропроводности или диэлектрических потерь. Пробивное напряжение при тепловом пробое зависит от ряда факторов: частоты поля, условий охлаждения, температуры окружающей среды и др. Кроме того, напряжение теплового пробоя связано с нагревостойкостью материала. Органические диэлектрики вследствие малой нагревостойкости при прочих равных условиях имеют более низкие значения пробивных напряжений при тепловом пробое, чем неорганические. При расчетах напряжения теплового пробоя должны приниматься во внимание тангенс угла диэлектрических потерь диэлектрика и его зависимость от температуры, а также диэлектрическая проницаемость материала. В цепях переменного тока низкой частоты находят применение материалы, дающие резкое возрастание тангенса угла диэлектрических потерь уже при нагреве выше 20…30°С; с другой стороны, известны диэлектрики, значение тангенса угла диэлектрических потерь которых мало меняется в очень широком интервале температур, вплоть до 150…200°С. В последнем случае тепловой пробой сможет развиваться только при достижении этих температур.

Электрохимический пробой изоляционных материалов имеет особенно существенное значение при повышенных температурах и высокой влажности воздуха. Этот вид пробоя наблюдается при постоянном и переменном напряжениях низкой частоты, когда в материале развиваются электролитические процессы, обусловливающие необратимое уменьшение сопротивления изоляции.

Такое явление часто называют также старением диэлектрика в электрическом поле, поскольку оно приводит к постепенному снижению электрической прочности, заканчивающемуся пробоем при напряженности поля, значительно меньшей пробивной напряженности, полученной при кратковременном испытании.



Поделиться:


Последнее изменение этой страницы: 2016-09-19; просмотров: 1808; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.59.177.14 (0.008 с.)