Устройство и принцип действия. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Устройство и принцип действия.



Первичная обмотка ТТ включается последовательно в цепь измерительного тока и, следовательно, через нее проходит весь ток нагрузки или К.З. Этот ток является для ТТ принужденным и проходит по его первичной обмотке независимо от состояния вторичной обмотки, т.е. от того, замкнуто она и нагрузку, закорочена или разомкнута.

ТТ состоит из двух обмоток и сердечника. Часто изготовляют ТТ из двух сердечников, первичная обмотка является у них общей для всех сердечников. Ток проходящий по первичной обмотке ТТ, называется первичным и обозначается I1, а ток во вторичной обмотке называется вторичным и обозначается I2.

Ток I1 создает в сердечнике ТТ магнитный поток Ф1, который пересекая витки вторичной обмотки, индуцирует в ней вторичный ток I2, который также создает в сердечнике магнитный поток Ф2, но направленный противоположно магнитному потоку Ф1. Результирующий поток в сердечнике равен разности:

Фо=Ф1-Ф2 (3.1)

Величина магнитного потока зависит не только от величины создающего его тока, но и от количества витков обмотки, по которой этот ток проходит. Произведение тока на число витков F=I*w называется намагничивающей силой и выражается в ампер*витках (Ав), поэтому выражение (3.1) можно заменить выражением:

Fo=Fл-F2 (3.2.)

или

(3.3)

где Io или Iнам – ток намагничивания, являющийся частью первичного тока, обеспечивающий результирующий магнитный поток в сердечнике;

w1, w2 – число витков первичной и вторичной обмоток.

Разделив все члены выражения (3.3) на w2 получим:

или (3.4)

Отношение w2/w1 называется коэффициентом трансформации ТТ.

Поскольку при величинах первичного тока близких к номинальному, Iнам не превышает 0,5-3% номинального тока, то в этих условиях можно с некоторым приближением считать Iнам=0. Тогда:

(3.5)

Согласно действующему стандарту отношение номинального первичного тока к номинальному вторичному току называется номинальным коэффициентом трансформации (600/5, 1000/1 и т.п.).

Все пересчеты с первичного тока на вторичный и со вторичного на первичный производится по этим номинальным коэффициентам трансформации:

(3.6)

 

 

Измерительные преобразователи напряжения.

Назначение ТН

Трансформаторы напряжения (ТН) предназначены для измерения напряжения, питания цепей автоматики, сигнализации и релейной защиты линий электропередачи. Для первых трех случаев могут применяться двухобмоточные ТН.

Классификация ТН

ТН различаются:

· по числу фаз: однофазные и трехфазные;

· по числу обмоток: двухобмоточные и трехобмоточные;

· по классу точности, т.е. по допускаемым значениям погрешности;

· по способу охлаждения: с масляным охлаждением (масляные), с естественным воздушным охлаждением (сухие и с литой изоляцией);

· по роду установки: для внутренней или наружной установки.

Особенностью ТН является их малая мощность при высоком напряжении первичной обмотки, т.е. ТН является маломощными понижающими трансформаторами, имеющими почти всегда большой коэффициент трансформации. Кроме того, ТН должен обладать малым падением напряжения в первичной и вторичной обмотках, чтобы иметь возможно меньшие погрешности коэффициента трансформации и угла сдвига между векторами первичного и вторичного напряжений.

Маркировка обмоток ТН

 

При маркировке выводов вторичных обмоток ТН за начало а принимают тот вывод, из которого ток выходит, в то время когда в первичной обмотке ток проходит от начала А к концу Х. Иными словами если на первичной стороне ток входит в начало А, то однополярным выводом, т.е. началом вторичной обмотки а, будет тот ее вывод, из которого в этот момент ток выходит. При маркировке и включении обмоток по такому правилу направление тока в реле, при включении реле через ТН останется таким же, как и при включении реле непосредственно в сети.

Электромеханическое реле

В схемах РЗА применяются электромеханические реле, полупроводниковые, на микроэлектронной базе, реле с использованием насыщающейся магнитных систем.

Наличие недостатков (большие размеры, большое потребление мощности, трудности с обеспечением надежной работы контактов) ведет к новым принципам исполнения реле, что позволяет улучшить параметры и характеристики схем защит, а также применять бесконтактные схемы. Кроме реле, реагирующие на электрические величины применяются также реле реагирующие на неэлектрические величины (газовое реле, повышение температура трансформаторов).

Реле, реагирующие на электрические величины делятся на следующие группы:

· реагирующие на одну величину;

· реагирующие на две величины;

· реагирующие на три и более.

Кроме того, электромеханические реле подразделяются на реле электромагнитные, индукционные, электродинамические, индукционно-динамические, магнитоэлектрические.

Основными требованиями предъявляемые к реле являются:

· надежное замыкание и размыкание электрической цепи (требование относится к контактной системе реле Sк=UкIк);

· термическая стойкость (требование относится к обмотке реле Sр=UрIр).

 
Электромагнитные реле. Принцип действия Iр-> Iрωр-> Ф. Электромагнитная сила Fэ равна Fэ=кФ2, где магнитный поток Ф равен . Таким образом , а магнитный момент , где lр – плечо силы Fэ. Для срабатывания реле необходимо создать силу Fэ= Fэср=Fn+ Fт, где Fn- сила пружины, Fт- сила трения. Наименьший ток, при котором реле срабатывает равен . Для регулирования применяется ступенчатое изменение числа витков, плавное изменение Мn(Fn) пружины. Возврат якоря происходит под действием пружины, для возврата необходимо, чтобы Мп>М'эт. Для уменьшения Мэ нужно снизить IР до определенной величины. так чтобы Мп=М'эт. Таким образом током возврата Iвоз называется наибольший ток реле при котором якорь реле возвращается в начальное положение. Коэффициент возврата равен . Если реле минимального действия, то ток срабатывания Iср – наибольший ток, при котором отпадает якорь реле, а ток возврата Iвоз – наименьший ток, при котором притягивается якорь реле. Коэффициент возврата в этом случае больше единицы квоз>1.

 

4) Релейная защита является основным видом электрической автоматики, без которой невозможна нормальная и надежная работа современных энергетических систем. Она осуществляет непрерывный контроль за состоянием и режимом работы всех элементов энергосистемы и реагирует на возникновение повреждений и ненормальных режимов.

При возникновении повреждений защита выявляет и отключает от системы поврежденный участок, воздействуя на специальные силовые выключатели, предназначенные для размыкания токов повреждения.

При возникновении ненормальных режимов защита выявляет их и в зависимости от характера нарушения производит операции, необходимые для восстановлениянормального режима, или подает сигнал дежурному персоналу.

Требования к защите от К.З.

а) Селективность

б) Быстрота действия

в) Чувствительность.

г) Надежность



Поделиться:


Последнее изменение этой страницы: 2016-09-18; просмотров: 253; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.216.186.164 (0.007 с.)