Архитектура протоколов беспроводных сетей IEEE 802.11 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Архитектура протоколов беспроводных сетей IEEE 802.11



Д.В. Денисов

 

ПАКЕТНЫЕ РАДИОСЕТИ

Методические указания по организации самостоятельных работ

для студентов очной формы обучения

на базе среднего (полного) общего образования,

обучающихся по направлению подготовки бакалавра

210700 «Инфокоммуникационные технологии и системы связи»

(профиль «Цифровое телерадиовещание»),

в соответствии с ФГОС ВПО 3 поколения

 

 

Екатеринбург


УДК 621.396.93

ББК 32.884

 

Рецензент: доктор техн. наук, профессор Панченко Б.А.

 

Денисов Д.В.

Пакетные радиосети: Методические указания по организации самостоятельных работ / Д.В. Денисов- Екатеринбург: УрТИСИ ФГОБУ ВПО «СибГУТИ», 2012. – 54 с.

Методические указания по выполнению самостоятельных работ по дисциплине «Пакетные радиосети» предназначены для студентов очной формы обучения на базе среднего (полного) общего образования, обучающихся по направлению подготовки бакалавра 210700 «Инфокоммуникационные технологии и системы связи» (профиль «Цифровое телерадиовещание»).

Выполнение самостоятельных работ предусматривает дополнительное изучение материала, расширяет кругозор теоретических знаний дисциплины в изучении ракетный радиосетей.

Научиться самостоятельно, работать с литературой.

Методические указания содержат перечень литературы и задания для выполнения самостоятельной работы.

Рекомендовано НМС УрТИСИ ФГОБУ ВПО «СибГУТИ» в качестве методических указаний по выполнению самостоятельных работ по дисциплине «Пакетные радиосети» для студентов очной формы обучения на базе среднего (полного) общего образования, обучающихся по направлению подготовки бакалавра 210700 «Инфокоммуникационные технологии и системы связи» (профиль «Цифровое телерадиовещание»), в соответствии с ФГОС ВПО 3 поколения.

 

УДК 621.396.93

ББК 32.884

 

© Кафедра общепрофессиональных дисциплин

технических специальностей

 

© УрТИСИ ФГОБУ ВПО «СибГУТИ», 2012

 

 

 
 

СОДЕРЖАНИЕ


Пояснительная записка    
Самостоятельная работа 1 "Архитектура протоколов беспроводных сетей IEEE 802.11"  
Самостоятельная работа 2 "Структура протоколов беспроводных сетей IEEE 802.11"    
Самостоятельная работа 3 "Проектирование Wi-Fi беспроводной сети передачи данных "    
Самостоятельная работа 4 "Базовые характеристики антенных систем в пакетных радиосетях. Особенности распространения сигнала между антеннами "  
Самостоятельная работа 5 "Построение антенно-фидерных трактов и радиосистем с внешними антеннами "    
Самостоятельная работа 6 "Безопасность беспроводных сетей "  

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

 

Методические указания к выполнению самостоятельной работы составлены в соответствии с рабочей программой дисциплины «Пакетные радиосети», предназначены для студентов направления 210700 «Инфокоммуникационные технологии и системы связи» профиль «Цифровое телерадиовещание» на базе среднего (полного) общего образования. Выполнение самостоятельной работы предусматривает закрепление теоретических знаний курса, получение необходимых навыков математического расчета, умение самостоятельно работать с литературой и составлять краткие тезисы и конспекты.

Выполнение самостоятельно работы следует производить с необходимыми пояснениями, расчетами, выводами, приводить схемы, формулы и графики, пояснять значения символов в них.

Самостоятельная работа оформляются в отдельной тетради, и предоставляется преподавателю для поверки. По результатам проверки выставляется зачет.

На проведение самостоятельной работы в соответствии с программой отводится: 116 часов.

Количество часов на выполнение каждой работы, а также ее тема, указаны в таблице 1.

Таблица 1 - Перечень самостоятельных работ

Виды и содержание самостоятельной работы студента Кол-во часов
«Архитектура протоколов беспроводных сетей IEEE 802.11»  
«Структура протоколов беспроводных сетей IEEE 802.11»  
«Проектирование Wi-Fi беспроводной сети передачи данных»  
«Базовые характеристики антенных систем в пакетных радиосетях. Особенности распространения сигнала между антеннами»  
«Построение антенно-фидерных трактов и радиосистем с внешними антеннами»  
«Безопасность беспроводных сетей»  
Итого:  

Самостоятельная работа 1

Архитектура протоколов беспроводных сетей IEEE 802.11

1. Цель работы:

1.1. Изучить архитектуру протоколов стандарта IEEE 802.11

 

2. Литература:

2.1. Сети UMTS. Архитектура, мобильность, сервисы Х. Каранен, А. Ахтиайнен, Лаитинен, С. Найян, В. Ниеми; - М.: Техносфера, 2007.

2.2 Основы информационных технологий. Беспроводные сети Wi-Fi. А.В. Пролетарский А.В., Баскаков И.В., Чирков Д.Н. и др. - М.: Бином, 2007

3. Задание:

3.1. Изучить методический материал к данной самостоятельной работе.

3.2. Составить конспект по теме самостоятельной работе с ответом на нижеперечисленные вопросы:

3.2.1 Описать Стек протоколов IEEE 802.11.

3.2.2 Указать режимы доступа к среде передачи стандарта 802.11. Подробно расписать алгоритм захвата станцией среды передачи.

3.2.3 Как решается проблема скрытого терминала в IEEE 802.11?

3.2.4 Написать общую структуру кадра, и поля управления кадром 802.11, перечислить назначение каждого поля кадра.

3.2.5 Описать кадр MAC - подуровня стандарта 802.11. Перечислить различные типы кадров MAC, их назначение, виды и особенности.

3.2.6 Назначение и виды контрольных кадров MAC-подуровня.

3.2.7 Назначение и виды информационных кадров MAC-подуровня.

3.2.8 Назначение и виды кадров управления MAC-подуровня.

 

Методический материал

Институт инженеров по электротехнике и электронике IEEE (Institute of Electrical and Electronics Engineers) сформировал рабочую группу по стандартам для беспроводных локальных сетей 802.11 в 1990 году [1]. Эта группа занялась разработкой всеобщего стандарта для радиооборудования и сетей, работающих на частоте 2,4 ГГц, со скоростями доступа 1 и 2 Мбит/с. Работы по созданию стандарта были завершены через 7 лет, и в июне 1997 года была ратифицирована первая спецификация 802.11. Стандарт IEEE 802.11 являлся первым стандартом для продуктов WLAN от независимой международной организации, разрабатывающей большинство стандартов для проводных сетей.

В этом подразделе будет рассмотрена архитектура самого популярного стандарта беспроводных локальных сетей — IEEE 802.11, а в следующем подразделе рассмотрим наиболее популярные стандарты: IEEE 802.11a, IEEE 802.11b и IEEE 802.11g.

 

4.1 Стек протоколов IEEE 802.11

 

Естественно, что стек протоколов стандарта IEEE 802.11 соответствует общей структуре стандартов комитета 802, то есть состоит из физического уровня и канального уровня с подуровнями управления доступом к среде MAC (Media Access Control) и логической передачи данных LLC (Logical Link Control). Как и у всех технологий семейства 802, технология 802.11 определяется нижними двумя уровнями, то есть физическим уровнем и уровнем MAC, а уровень LLC выполняет свои стандартные общие для всех технологий LAN функции (рис. 1).

 

 

Рис. 1 Стек протоколов IEEE 802.11

 

На физическом уровне существует несколько вариантов спецификаций, которые отличаются используемым частотным диапазоном, методом кодирования и как следствие скоростью передачи данных. Все варианты физического уровня работают с одним и тем же алгоритмом уровня MAC, но некоторые временные параметры уровня MAC зависят от используемого физического уровня.

 

4.2 Уровень доступа к среде стандарта 802.11

 

В сетях 802.11 уровень MAC обеспечивает два режима доступа к разделяемой среде (рис. 1):

- распределенный режим DCF (Distributed Coordination Function);

- централизованный режим PCF (Point Coordination Function).

-

Самостоятельная работа 2

Стандарты 802.11

IEEE 802.11 - это набор стандартов беспроводной связи для организации беспроводных локальных сетей, работающих в зоне частотных диапазонов 0,9; 2,4; 3,6 и 5 ГГц.

Стандарт наиболее известен как Wi-Fi, предложенный и продвигаемый организацией Wi-Fi Alliance. Изначально стандарт IEEE 802.11 предполагал возможность передачи данных по радиоканалу на скорости не более 1 Мбит/с и, опционально, на скорости 2 Мбит/с. Один из первых высокоскоростных стандартов беспроводных сетей — IEEE 802.11a — определяет скорость передачи уже до 54 Мбит/с брутто. Рабочий диапазон стандарта — 5 ГГц. В качестве метода модуляции сигнала выбрано ортогональное частотное мультиплексирование (OFDM). К недостаткам 802.11a относятся более высокая потребляемая мощность радиопередатчиков для частот 5 ГГц, а так же меньший радиус действия [1].

В стандарте IEEE 802.11b благодаря более высокой скорости передачи данных (до 11 Мбит/с) работающий в диапазоне 2,4 ГГц, этот стандарт завоевал наибольшую популярность у производителей оборудования для беспроводных сетей.

Поскольку оборудование, работающее на максимальной скорости 11 Мбит/с имеет меньший радиус действия, чем на более низких скоростях, то стандартом 802.11b предусмотрено автоматическое понижение скорости при ухудшении качества сигнала.

Стандарт IEEE 802.11g является логическим развитием 802.11b и предполагает передачу данных в том же частотном диапазоне. Кроме того, стандарт 802.11g полностью совместим с 802.11b, то есть любое устройство 802.11g должно поддерживать работу с устройствами 802.11b. Максимальная скорость передачи в стандарте 802.11g составляет 54 Мбит/с.

При разработке стандарта 802.11g рассматривались две несколько конкурирующие технологии: метод ортогонального частотного разделения OFDM и метод двоичного пакетного сверочного кодирования PBCC, опционально реализованный в стандарте 802.11b. В результате стандарт 802.11g содержит компромиссное решение: в качестве базовых применяются технологии OFDM и CCK, а опционально предусмотрено использование технологии PBCC. О технологиях CCK и OFDM расскажем чуть позже.

Набор стандартов 802.11 определяет целый ряд технологий реализации физического уровня (Physical Layer Protocol, PHY), которые могут быть использованы подуровнем 802.11 MAC. В этой главе рассматривается каждый из уровней PHY:

Уровень PHY стандарта 802.11 со скачкообразной перестройкой частоты (FHSS) в диапазоне 2,4 ГГц.

Уровень PHY стандарта 802.11 с расширением спектра методом прямой последовательности (DSSS) в диапазоне 2,4 ГГц.

Уровень PHYстандарта 802.11b с комплиментарным кодированием в диапазоне 2,4 ГГц.

Уровень PHY стандарта 802.11а с ортогональным частотным мультиплексированием (OFDM) в диапазоне 5 ГГ ц.

Расширенный физический уровень (Extended Rate Physical Layer, ERP) стандарта 802.11g в диапазоне 2,4 ГГц.

Основное назначение физических уровней стандарта 802.11 - обеспечить механизмы беспроводной передачи для подуровня MAC, а также поддерживать выполнение вторичных функций, таких как оценка состояния беспроводной среды и сообщение о нем подуровню MAC. Уровни МАС и PHY разрабатывались так, чтобы они были независимыми. Именно независимость между MAC и подуровнем PHY и позволила использовать дополнительные высокоскоростные физические уровни, описанные в стандартах 802.l1b, 802.11а и 802.11g.

Каждый из физических уровней стандарта 802.11 имеет два подуровня.

Physical Layer Convergence Procedure (PLCP). Процедура определения состояния физического уровня.

Physical Medium Dependent (PMD). Подуровень физического уровня, зависящий от среды передачи.

На рисунке 1 показано, как эти подуровни соотносятся между собой и с вышестоящими уровнями в модели взаимодействия открытых систем (Open System Interconnection, OSI).

 

 

Рис. 1 Подуровни уровня PHY

 

Подуровень PLCP по существу является уровнем обеспечения взаимодействия, на котором осуществляется перемещение элементов данных протокола MAC (MAC Protocol Data Units, MPDU) между МАС-станциями с использованием подуровня PMD, на котором реализуется тот или иной метод передачи и приема данных через беспроводную среду. Подуровни PLCP и PMD отличаются для разных вариантов стандарта 802.11.

Перед тем как приступить к рассмотрению физических уровней рассмотрим одну из составляющих физического уровня, до сих пор не упомянутую, а именно скремблирование.

Одна из особенностей, лежащих в основе современных передатчиков, благодаря которой данные можно передавать с высокой скоростью, — это предположение о том, что данные, которые предлагаются для передачи, поступают, с точки зрения передатчика, случайным образом. Без этого предположения многие преимущества, получаемые за счет применения остальных составляющих физического уровня, остались бы нереализованными.

Однако вполне вероятно и часто происходит на практике, что принимаемые данные не вполне случайны и на самом деле могут содержать повторяющиеся наборы и длинные последовательности нулей и единиц.

Скремблирование (перестановка элементов) — это метод, посредством которого принимаемые данные делаются более похожими на случайные; достигается это путем перестановки битов последовательности таким образом, чтобы превратить ее из структурированной в похожую на случайную. Эту процедуру иногда называют отбеливание потока данных. Дескремблер приемника затем выполняет обратное преобразование этой случайной последовательности с целью получения исходной структурированной последовательности. Большинство из способов скремблирования относится к числу самосинхронизирующихся; это означает, что дескремблер способен самостоятельно синхронизироваться со скремблером.

В настоящее время стандарт IEEE 802.11 насчитывает более десятка версий. Например одна из последних версий - IEEE 802.11ac, работает на частотах 5—6 ГГц. Стандарт позволяет расширить пропускную способность сети и работать на скоростях от 433 Мбит/с до 6,77 Гбит/с при 8 x MU-MIMO-антеннах. Кроме того, снизилось энергопотребление по сравнению с предыдущими версиями. Как следствие продлит время автономной работы мобильных устройств.

Методы передачи IEEE 802.11

 

Исходный стандарт 802.11 определяет три метода передачи на физическом уровне:

1) Передача в диапазоне инфракрасных волн.

2) Технология расширения спектра путем скачкообразной перестройки частоты (FHSS) в диапазоне 2,4 ГГц.

3) Технология широкополосной модуляции с расширением спектра методом прямой последовательности (DSSS) в диапазоне 2,4 ГГц.

 

IEEE 802.11b

 

На физическом уровне к МАС-кадрам (MPDU) добавляется заголовок физического уровня, состоящий из преамбулы и собственно PLCP-заголовка (рис. 5).

 

 

Рис. 5 Структура кадров сети IEEE 802.11b физического уровня

 

Преамбула содержит стартовую синхропоследовательность (SYNC) для настройки приемника и 16-битный код начала кадра (SFD) — число F3A016. PLCP-заголовок включает поля SIGNAL (информация о скорости и типе модуляции), SERVICE (дополнительная информация, в том числе о применении высокоскоростных расширений и PBSS-модуляции) и LENGTH (время в микросекундах, необходимое для передачи следующей за заголовком части кадра). Все три поля заголовка защищены 16-битной контрольной суммой CRC.

В стандарте IEEE 802.11b предусмотрено два типа заголовков: длинный и короткий (рис. 6).

 

 

Рис. 6. Короткий заголовок кадров сети 802.11b

 

Они отличаются длиной синхропоследовательности (128 и 56 бит), способом ее генерации, а также тем, что символ начала кадра в коротком заголовке передается в обратном порядке. Кроме того, если все поля длинного заголовка передаются со скоростью 1 Мбит/с, то при коротком заголовке преамбула транслируется на скорости

Мбит/с, другие поля заголовка — со скоростью 2 Мбит/с. Остальную часть кадра можно передавать на любой из допустимых стандартом скоростей передачи, указанных в полях SIGNAL и SERVICE. Короткие заголовки физического уровня предусмотрены спецификацией IEEE 802.11b для увеличения пропускной способности сети.

Из описания процедур связи сети IEEE 802.11 видно, что «накладные расходы» в этом стандарте выше, чем в проводной сети Ethernet. Поэтому крайне важно обеспечить высокую скорость передачи данных в канале. Повысить пропускную способность канала с заданной шириной полосы частот можно, разрабатывая и применяя более совершенные методы модуляции. По этому пути пошла группа разработчиков IEEE 802.11b.

Напомним, что изначально стандарт IEEE 802.11 предусматривал работу в режиме DSSS с использованием так называемой Баркеровской последовательности (Barker) длиной 11 бит: В1 = (10110111000). Каждый информационный бит замещается своим произведением по модулю 2 (операция «исключающее ИЛИ») с данной последовательностью, т. е. каждая информационная единица заменяется на B1, каждый ноль — на инверсию B1. В результате бит заменяется последовательностью 11 чипов. Далее сигнал кодируется посредством дифференциальной двух- или четырехпозиционной фазовой модуляции (DBPSK или DQPSK, один или два чипа на символ соответственно). При частоте модуляции несущей 11 МГц общая скорость составляет в зависимости от типа модуляции 1 и 2 Мбит/с.

Стандарт IEEE 802.11b дополнительно предусматривает скорости передачи 11 и 5,5 Мбит/с. Для этого используется так называемая ССК-модуляция (Complementary Code Keying — кодирование комплементарным кодом).

Хотя механизм расширения спектра, используемый для получения скоростей 5,5 и

Мбит/с с применением ССК, относится к методам, которые применяются для скоростей

и 2 Мбит/с, он по-своему уникален. В обоих случаях применяется метод расширения, но при использовании модуляции ССК расширяющий код представляет собой код из 8 комплексных чипов, в то время как при работе со скоростями 1 и 2 Мбит/с применяется 11-разрядный код. 8-чиповый код определяется или 4, или 8 битами — в зависимости от скорости передачи данных. Скорость передачи чипов составляет 11 Мчип/с, т.е. при 8 комплексных чипах на символ и 4 или 8 битов на символ можно достигнуть скорости передачи данных 5,5 и 11 Мбит/с.

Для того чтобы передавать данные со скоростью 5,5 Мбит/с, нужно сгруппировать скремблированный поток битов в символы по 4 бита (b0, b1, b2 и ЬЗ). Последние два бита (b2 и ЬЗ) используются для определения 8 последовательностей комплексных чипов, как показано в табл. 1.3, где {cl, с2, сЗ, с4, с5, с6, с7, с8} представляют чипы последовательности. В табл. 1.3 j представляет мнимое число, корень квадратный из -1, и откладывается по мнимой, или квадратурной оси комплексной плоскости.

 

Таблица 1.3 Последовательность чипов ССК

 

 

Теперь, имея последовательность чипов, определенную битами (Ь2, ЬЗ), можно использовать первые два бита (Ь0, Ь1) для определения поворота фазы, осуществляемого при модуляции по методу DQPSK, который будет применен к последовательности (табл. 1.4). Вы должны также пронумеровать каждый 4-битовый символ PSDU, начиная с 0, чтобы можно было определить, преобразуете вы четный либо нечетный символ в соответствии с этой таблицей. Следует помнить, что речь идет об использовании DQPSK, а не QPSK, и поэтому представленные в таблице изменения фазы отсчитываются по отношению к предыдущему символу или, в случае первого символа PSDU, по отношению к последнему символу предыдущего DQPSK символа, передаваемого со скоростью

Мбит/с.

Таблица 1.4. Поворот фазы при модуляции ССК

 

 

Это вращение фазы применяется по отношению к 8 комплексным чипам символа, затем осуществляется модуляция на подходящей несущей частоте.

Чтобы передавать данные со скоростью 11 Мбит/с, скремблированная последовательность битов PSDU разбивается на группы по 8 символов. Последние 6 битов выбирают одну последовательность, состоящую из 8 комплексных чипов, из числа 64 возможных последовательностей, почти так же, как использовались биты (Ь2, ЬЗ) для выбора одной из четырех возможных последовательностей. Биты (Ь0,Ь1) используются таким же образом, как при модуляции ССК на скорости 5,5 Мбит/с для вращения фазы последовательности и дальнейшей модуляции на подходящей несущей частоте.

В чем достоинство ССК-модуляции? Дело в том, что чипы символа определяются на основе последовательностей Уолша-Адамара. Последовательности Уолша-Адамара хорошо изучены, обладают отличными автокорреляционными свойствами. Что немаловажно, каждая такая последовательность мало коррелирует сама с собой при фазовом сдвиге - очень полезное свойство при борьбе с переотраженными сигналами. Нетрудно заметить, что теоретическое операционное усиление ССК-модуляции - 3 дБ (в два раза), поскольку без кодирования QPSK-модулированный с частотой 11 Мбит/с сигнал может транслировать 22 Мбит/с. Как видно, ССК-модуляция представляет собой вид блочного кода, а потому достаточно проста при аппаратной реализации. Совокупность этих свойств и обеспечила ССК место в стандарте IEEE 802.11Ь в качестве обязательного вида модуляции.

На практике важно не только операционное усиление. Существенную роль играет и равномерность распределения символов в фазовом пространстве — они должны как можно дальше отстоять друг от друга, чтобы минимизировать ошибки их детектирования. И с этой точки зрения ССК-модуляция не выглядит оптимальной, ее реальное операционное усиление не превышает 2 дБ. Поэтому изначально прорабатывался другой способ модуляции — пакетное бинарное сверточное кодирование РВСС (Packet Binary Convolutional Coding). Этот метод вошел в стандарт IEEE 802.11b как дополнительная (необязательная) опция. Механизм РВСС (рис. 1.27) позволяет добиваться в сетях IEEE 802.11b пропускной способности 5,5; 11 и 22 Мбит/с.

 

 

 

Рис. 7 Общая схема РВСС-модуляции

 

Как следует из названия, метод основан на сверточном кодировании. Для скоростей

и 11 Мбит/с поток информационных битов поступает в шестиразрядный сдвиговый регистр с сумматорами (рис. 8). В начальный момент времени все триггеры сдвигового регистра инициализируют нулем. В результате каждый исходный бит d заменяется двумя битами кодовой последовательности (c0, c1). При скорости 11 Мбит/с с0 и c1 задают один символ четырехпозиционной QPSK-модуляции. Для скорости 5,5 Мбит/с используют двухпозиционную BPSK-модуляцию, последовательно передавая кодовые биты c0 и с1. Если же нужна скорость 22 Мбит/с, схема кодирования усложняется (рис. 9): три кодовых бита (c0-c2) определяют один символ в 8-позиционной 8-РSК-модуляции.

После формирования PSK-символов происходит скремблирование. В зависимости от сигнала s (рис. 3) символ остается без изменений (s = 0), либо его фаза увеличивается на (s = 1). Значение s определяет 256-битовая циклически повторяющаяся

последовательность S. Она формируется на основе начального вектора U = 338Bh, в котором равное число нулей и единиц.

 

 

Рис. 8 Свёрточное кодирование с двумя битами кодовой последовательности

 

 

Рис. 9 Свёрточное кодирование с тремя битами кодовой последовательности

 

У шестиразрядного сдвигового регистра, применяемого в РВСС для скоростей 11 и

Мбит/с, 64 возможных выходных состояния. Так что при модуляции РВСС информационные биты в фазовом пространстве оказываются гораздо дальше друг от друга, чем при ССК-модуляции. Поэтому РВСС и позволяет при одних и тех же соотношении сигнал/шум и уровне ошибок вести передачу с большей скоростью, чем в случае СКК. Однако плата за более эффективное кодирование - сложность аппаратной реализации данного алгоритма.

 

IEEE 802.11а

 

Стандарт IEEE 802.11а появился практически одновременно с IEEE 802.11b, в сентябре 1999 года. Эта спецификация была ориентирована на работу в диапазоне 5 ГГц и основана на принципиально ином, чем описано выше, механизме кодирования данных — на частотном мультиплексировании посредством ортогональных несущих (OFDM).

Стандарт 802.11a определяет характеристики оборудования, применяемого в офисных или городских условиях, когда распространение сигнала происходит по многолучевым каналам из-за множества отражений.

В IEEE 802.11а каждый кадр передается посредством 52 ортогональных несущих, каждая с шириной полосы порядка 300 кГц (20 МГц/64). Ширина одного канала — 20 МГц. Несущие модулируют посредством BPSK, QPSK, а также 16- и 64-позиционной квадратурной амплитудной модуляции (QAM). В совокупности с различными скоростями кодирования r (1/2 и 3/4, для 64-QAM — 2/3 и 3/4) образуется набор скоростей передачи 6, 9, 12, 18, 24, 36, 48 и 54 Мбит/с. В табл. 1.5 показано, как необходимая скорость передачи данных преобразуется в соответствующие параметры узлов передатчика OFDM.

 

Таблица 1.5 - Параметры передатчика стандарта 802.11а

 

 

Из 52 несущих 48 предназначены для передачи информационных символов, остальные 4 — служебные. Структура заголовков физического уровня отличается от принятого в спецификации IEEE 802.11b, но не существенно (рис. 10).

 

 

 

Рис. 10 Структура заголовка физического уровня стандарта IEEE 802.11а

 

Кадр включает преамбулу (12 символов синхропоследовательности), заголовок физического уровня (PLCP-заголовок) и собственно информационное поле, сформированное на МАС-уровне. В заголовке передается информация о скорости кодирования, типе модуляции и длине кадра. Преамбула и заголовок транслируются с минимально возможной скоростью (BPSK, скорость кодирования r = 1/2), а информационное поле — с указанной в заголовке, как правило максимальной, скоростью, в зависимости от условий обмена. OFDM-символы передаются через каждые 4 мкс, причем каждому символу длительностью 3,2 мкс предшествует защитный интервал

8 мкс (повторяющаяся часть символа). Последний необходим для борьбы с многолучевым распространением сигнала — отраженный и пришедший с задержкой символ попадет в защитный интервал и не повредит следующий символ.

Естественно, формирование/декодирование OFDM-символов происходит посредством быстрого преобразования Фурье (обратного/прямого, ОБПФ/БПФ). Функциональная схема трактов приема/передачи (рис. 11) достаточно стандартна для данного метода и включает сверточный кодер, механизм перемежения /перераспределения (защита от пакетных ошибок) и процессор ОБПФ. Фурье-процессор, собственно, и формирует суммарный сигнал, после чего к символу добавляется защитный интервал, окончательно формируется OFDM-символ и посредством квадратурного модулятора/конвертера переносится в заданную частотную область. При приеме все происходит в обратном порядке.

 

 

Рис. 11 Функциональная схема трактов приема/передачи стандарта IEEE 802.11а 1.5.4 IEEE 802.11G

 

Стандарт IEEE 802.11g по сути представляет собой перенесение схемы модуляции OFDM, прекрасно зарекомендовавшей себя в 802.11а, из диапазона 5 ГГц в область

ГГц при сохранении функциональности устройств стандарта 802.11b. Это возможно, поскольку в стандартах 802.11 ширина одного канала в диапазонах 2,4 и 5 ГГц схожа —

МГц.

Одним из основных требований к спецификации 802.11g была обратная совместимость с устройствами 802.11b. Действительно, в стандарте 802.11b в качестве основного способа модуляции принята схема ССК (Complementary Code Keying), а в качестве дополнительной возможности допускается модуляция PBSS.

Разработчики 802.11g предусмотрели ССК-модуляцию для скоростей до 11 Мбит/с и OFDM для более высоких скоростей. Но сети стандарта 802.11 при работе используют принцип CSMA/CA — множественный доступ к каналу связи с контролем несущей и предотвращением коллизий. Ни одно устройство 802.11 не должно начинать передачу, пока не убедится, что эфир в его диапазоне свободен от других устройств. Если в зоне слышимости окажутся устройства 802.11b и 802.11g, причем обмен будет происходить между устройствами 802.11g посредством OFDM, то оборудование 802.11b просто не поймет, что другие устройства сети ведут передачу, и попытается начать трансляцию. Последствия очевидны.

Чтобы подобную ситуацию не допустить, предусмотрена возможность работы в смешанном режиме — CCK-OFDM. Информация в сетях 802.11 передается кадрами. Каждый информационный кадр включает два основных поля: преамбулу с заголовком и информационное поле (рис. 12).

 

 

Рис. 12 Кадры IEEE 802.11g в различных режимах модуляции

 

Преамбула содержит синхропоследовательность и код начала кадра, заголовок - служебную информацию, в том числе о типе модуляции, скорости и продолжительности передачи кадра. В режиме CCK-OFDM преамбула и заголовок модулируются методом ССК (реально - путем прямого расширения спектра DSSS посредством последовательности Баркера, поэтому в стандарте 802.11g этот режим именуется DSSS- OFDM), а информационное поле — методом OFDM. Таким образом, все устройства 802.11b, постоянно «прослушивающие» эфир, принимают заголовки кадров и узнают, сколько времени будет транслироваться кадр 802.11g. В этот период они «молчат». Естественно, пропускная способность сети падает, поскольку скорость передачи преамбулы и заголовка — 1 Мбит/с.

Видимо, данный подход не устраивал лагерь сторонников технологии PBSS, и для достижения компромисса в стандарт 802.11g в качестве дополнительной возможности ввели, так же как и в 802.11b, необязательный режим — PBSS, в котором заголовок и преамбула передаются так же, как и при ССК, а информационное поле модулируется по схеме PBSS и передается на скорости 22 или 33 Мбит/с. В результате устройства стандарта 802.11g должны оказаться совместимыми со всеми модификациями оборудования 802.11b и не создавать взаимных помех. Диапазон поддерживаемых им скоростей отражен в табл. 1.6.

 

Таблица 1.6 - Возможные скорости и типы модуляции в спецификации IEEE 802.11g

 

 

Основной принцип работы в сетях 802.11 — «слушать, прежде чем вещать». Но устройства 802.11b не способны услышать устройства 802.11g в OFDM-режиме. Ситуация аналогична проблеме скрытых станций: два устройства удалены настолько, что не слышат друг друга и пытаются обратиться к третьему, которое находится в зоне слышимости обоих. Для предотвращения конфликтов в подобной ситуации в 802.11 введен защитный механизм, предусматривающий перед началом информационного обмена передачу короткого кадра «запрос на передачу» (RTS) и получение кадра подтверждения «можно передавать» (CTS). Механизм RTS/CTS применим и к смешанным сетям 802.11b/g. Естественно, эти кадры должны транслироваться в режиме ССК, который обязаны понимать все устройства. Однако защитный механизм существенно снижает пропускную способность сети.

В табл. 1.7 представлена сводная информация по параметрам физических уровней.

 

Таблица 1.7 Стандарты физического уровня

 

Самостоятельная работа 3

Инфраструктурный режим

 

В этом режиме точки доступа обеспечивают связь клиентских компьютеров (рис. 2). Точку доступа можно рассматривать как беспроводный коммутатор. Клиентские станции не связываются непосредственно одна с другой, а связываются с точкой доступа, и она уже направляет пакеты адресатам.

 

Рис. 2 Инфраструктурный режим

 

Точка доступа имеет порт Ethernet, через который базовая зона обслуживания подключается к проводной или смешанной сети - к сетевой инфраструктуре.

 

Режимы WDS и WDS With AP

 

Термин WDS (Wireless Distribution System) расшифровывается как «распределённая беспроводная система». В этом режиме точки доступа соединяются только между собой, бразуя мостовое соединение. При этом каждая точка может соединяться с несколькими другими точками. Все точки в этом режиме должны использовать одинаковый канал, поэтому количество точек, участвующих в образовании моста, не должно быть чрезмерно большим. Подключение клиентов осуществляется только по проводной сети через uplink- порты точек (рис. 3).

Рис. 3 Мостовой режим

 

Режим беспроводного моста, аналогично проводным мостам, служит для объединения подсетей в общую сеть. С помощью беспроводных мостов можно объединять проводные LAN, находящиеся как на небольшом расстоянии в соседних зданиях, так и на расстояниях до нескольких километров. Это позволяет объединить в сеть филиалы и центральный офис, а также подключать клиентов к сети провайдера Интернет (рис. 4).

 

 

Рис. 4 Мостовой режим между зданиями

 

Беспроводный мост может использоваться там, где прокладка кабеля между зданиями нежелательна или невозможна. Данное решение позволяет достичь значительной экономии средств и обеспечивает простоту настройки и гибкость конфигурации при перемещении офисов.

К точке доступа, работающей в режиме моста, подключение беспроводных клиентов невозможно. Беспроводная связь осуществляется только между парой точек, реализующих мост.

 

WDS with AP (WDS with Access Point) обозначает «распределённая беспроводная система, включая точку доступа», т. е. с помощью этого режима можно организовать не только мостовую связь между точками доступа, но и одновременно подключить клиентские компьютеры (рис. 5). Это позволяет достичь существенной экономии оборудования и упростить топологию сети. Данная технология поддерживается большинством современных точек доступа.

 

Рис. 5 Режим WDS with AP

 

Тем не менее, необходимо помнить, что все устройства в составе одной WDS with AP работают на одной частоте и создают взаимные помехи, что ограничивает количество клиентов до 15-20 узлов. Для увеличения количества подключаемых клиентов можно использовать несколько WDS-сетей, настроенных на разные неперекрывающиеся каналы и соединенные проводами через uplink-порты.

Топология организации беспроводных сетей в режиме WDS аналогична обычным проводным топологиям.

 

Топология типа «шина»

 

Топология типа «шины» самой своей структурой предполагает идентичность сетевого оборудования компьютеров, а также равноправие всех абонентов (рис. 6)

 

Рис. 6 Топология типа «шина»

 

Здесь отсутствует центральный абонент, через которого передается вся информация, что увеличивает ее надежность (ведь при отказе любого центра перестает

функционировать вся управляемая этим центром система). Добавление новых абонентов в шину довольно просто. Надо ввести параметры новой точки доступа в последнюю, что приведёт только кратковременную перезарузку последней точки.

Шине не страшны отказы отдельных точек, так как все остальные компьютеры сети могут нормально продолжать обмен между собой, но при этом оставшаяся часть компьютеров не смогут получить доступ в Интернет.

 

Топология типа «кольцо»

 

«Кольцо» — это топология, в которой каждая точка доступа соединена только с двумя другими (рис. 7). Четко выделенного центра в данном случае нет, все точки могут быть одинаковыми.

 

 

Рис. 7 Топология тип «кольцо»

 

Подключение новых абонентов в «кольцо» обычно совершенно безболезненно, хотя и требует обязательной остановки работы двух крайних точек от новой точки доступа.



Поделиться:


Последнее изменение этой страницы: 2016-09-18; просмотров: 1174; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.143.9.115 (0.167 с.)