Общая классификация видов и средств мнк 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Общая классификация видов и средств мнк



Общая классификация видов и средств МНК

В основе НК лежат физические процессы взаимодействия различных полей, излучений или веществ с объектами контроля. По этому признаку выделяют девять основных видов НК: магнитный, электрический, вихретоковый, радиоволновой, тепловой, оптический, радиационный, акустический, проникающими веществами. Каждый из этих видов осуществляется многими методами контроля, которые классифицируют по характеру взаимодействия физических полей с контролируемым объектом, по первичному информативному параметру и по способу получения информации (в совокупности более ста наименований по ГОСТ 18353-79 «Контроль неразрушающий. Классификация видов и методов»).

Средства неразрушающего контроля распределяются по следующим направлениям:

- дефектоскопия (обнаружение дефектов типа нарушений сплошности – трещин, раковин, расслоений и т.д.);

- контроль геометрических характеристик (наружных и внутренних диаметров; толщин стенок, покрытий и слоев; степени износа; ширины и длины изделий и т.д.);

- определение физико–механических и физико–химических характеристик (электрических, магнитных и структурных параметров, отклонений от заданного химического состава, твердости, пластичности, качества упрочненных слоев, содержания и распределения ферритной фазы и т.п.);

- техническое диагностирование (определение технического состояния объекта в период эксплуатации).

Выбор метода и прибора неразрушающего контроля для решения задач дефектоскопии, толщинометрии, структуроскопии и технического диагностирования зависит от параметров контролируемого объекта и условий его обследования.

Дефекты типа нарушений сплошности являются следствием несовершенства структуры материалов и возникают на разных стадиях технологического процесса и в процессе эксплуатации.

Основными методами неразрушающего контроля являются:

- магнитный;

- электрический;

- вихретоковый;

- акустический;

- радиационный;

- тепловой;

- радиоволновой;

- оптический;

- проникающими веществами.

Применение МНК при производстве электронных приборов и РЭА

Наиболее простым в исполнении выглядит контроль поверхностных дефектов размерами от 0,3 до 1 мкм проникающими веществами. Также кажутся относительно несложными гидравлические испытания, сосудов работающих под давлением. А вот выявление и локализация критических течей в вакуумном и холодильном оборудовании уже требует применения сложных газоанализаторов: гелиевых и фреоновых течеискателей.

Частое применение акустического контроля обусловлено следующими достоинствами: возможность контроля внутренних дефектов, относительная простота аппаратуры, широкий спектр материалов пригодных для контроля.

Магнитные методы контроля, а также вихревые, электрические позволяют вести контроль лишь металлов на поверхности и в предповерхностном слое.

 

 

 

Методы теплового контроля

Основаны на регистрации тепловых полей, температуры или теплового контраста контролируемого объекта. Их применяют для измерения температур, получения информации о тепловом режиме объекта, определения и анализа температурных полей, дефектов типа нарушения сплошности (расслоения, трещины и т.п.), выявления дефектов пайки многослойных соединений из металлов и неметаллов, склейки металл — металл, металл — неметалл и т. п. Контроль осуществляется с помощью термометров, термоиндикаторов, пирометров, инфракрасных микроскопов и радиометров и т. д.

Эти методы также пока применяют ограниченно, в основном в приборостроении для контроля радиоэлектронной аппаратуры. В пленочных проводниках и резисторах выявляют микротрещины, утонения, плохую адгезию, плохой контакт; в микросхемах — плохой контакт, нарушения теплового контакта, короткие замыкания, перегрев; в пленочных конденсаторах — токи утечки; в микродиодах и микротранзисторах — перегрев, неудовлетворительные контакты.

Достоинствами теплового контроля являются: дистанционность, высокая скорость обработки информации; высокая производительность испытаний; высокое линейное разрешение: возможность контроля при одно- и двустороннем подходе к изделию; теоретическая возможность контроля любых материалов; многопараметрический характер испытаний; возможность взаимодополняющего сочетания ТНК с другими видами неразрушающего контроля; сочетаемость со стандартными системами обработки информации; возможность поточного контроля и создания автоматизированных систем контроля и управления технологическими процессами. Различают:

1)пассивный ТНК;

2) активный ТНК.

Принцип действия пирометра

Пирометр — прибор для бесконтактного измерения температуры тел. Принцип действия основан на измерении мощности теплового излучения объекта измерения преимущественно в диапазонах инфракрасного излучения и видимого света.

Пирометры могут быть: Односпектральными. Такие пирометры принимают излучения только в одном спектральном диапазоне. Односпектральные пирометры в свою очередь подразделяются на радиационные (мощность теплового излучения переводится в температуру) и яркостные (в диапазоне красного света измеряются яркости эталонного объекта и объекта измерения). В эту подгруппу входят пирометры полного излучения. Мультиспектральными. Также их называют цветовыми или пирометрами спектрального отношения.

Пирометры в основном используются:

На объектах слабой теплопроводности, таких как керамика, резина, пластик и т.д.

Сенсор прибора для контактного измерения способен отображать корректные показания температуры, если он принимает температуру объекта измерения. В случае с измеренном объектов слабой теплопроводимости время реакции очень большое.

для определения температуры поверхностей двигателей, корпусов и несущих компонентов больших и малых моторов.

для движущихся компонентов, например, на движущемся конвейере, вращающихся колесах, металлопрокатных станках и т.п.

для объектов, требующих бесконтактного измерения, например свежевыкрашенные части, стерильные или агрессивные среды.

для измерений малых и больших объектов при выборе различной оптики(линз).

для объектов под напряжением, например, электрических компонентах, электрических шинах, трансформаторах и т.п.

для малых и легких компонентов, например, компонентах и всех объектах измерения, из которых контактный зонд извлечет слишком много тепловой энергии, таким образом сделает измерение невозможным.

Принцип действия

Вследствие того, что тела нагреты неравномерно (например, температура автомобиля с работающим двигателем будет выше температуры автомобиля с двигателем выключенным), складывается некая картина распределения ИК-излучения.

Действие всех тепловизионных систем основано на фиксировании температурной разницы объект/фон и на преобразовании полученной информации в изображение, видимое глазом. Современные тепловизионные приборы способны обнаруживать температурный контраст, равный 0,05-0,1 К.

В то время как оптические приборы ночного видения, работающих на основе электронно-оптических преобразователей (ЭОП), улавливают излучение с длиной волны ~ 1-2 мкм, что лишь немногим выше чувствительности человеческого глаза, основные рабочие диапазоны тепловизионной аппаратуры охватывают следующие области длин волн: 8-14 мкм – область далекого ИК-излучения и 3-5,5 мкм – среднего ИК. Именно в этих областях приземные слои атмосферы прозрачны для ИК-излучения, а излучательная способность наблюдаемых объектов с температурой от -50 до +500С максимальна.

Таким образом, тепловизионные приборы способны обеспечивать большую дальность видения в любое время суток, через любую прозрачную для ИК-изучения маскировку и даже при несколько пониженной прозрачности атмосферы: при тумане, дожде, снегопаде, пыли и дыме. (Следует оговориться, что пары воды и углекислый газ весьма интенсивно поглощают волны ИК-спектра, и это заметно отражается на чувствительности приборов.)

Фоточувствительным элементом современного тепловизионного прибора является фокально-плоскостная двумерная многоэлементная матрица фотоприемников (FPA), изготовленная на основе полупроводников – примесных кремния и германия.

Поскольку в современных тепловизорах отсутствуют оптико-механические сканирующие устройства, они отличаются компактностью, малой энергоемкостью, высоким отношением сигнал/шум и хорошим качеством изображения.

Недостаток

Основным и главным недостатком тепловизора является большая цена. 90% стоимости прибора составляет его основные элементы: матрица и объектив.

Матрицы весьма сложны в производстве, и, соответственно, это все упирается в большие деньги.

С объективами ситуация сложнее: их нельзя сделать из стекла, потому что этот материал не пропускает ИК-излучение. По этой причине для создания объективов применяются редкие и дорогие материалы.

Для понижения шумов и, следовательно, повышения пороговой чувствительности, в тепловизионных приборах матрицу фоточувствительных элементов охлаждает микрокомпрессорная система, либо используется термостабилизация при помощи термоэлектрической системы.

В последнее время все большее распространение получают приборы с неохлаждаемой микроболометрической матрицей.

Приминение

Современные тепловизоры нашли широкое применение как на крупных промышленных предприятиях, где необходим тщательный контроль за тепловым состоянием объектов, так и в небольших организациях, занимающихся поиском неисправностей сетей различного назначения. Так, сканирование тепловизором может безошибочно показать место отхода контактов в системах электропроводки.

Особенно широкое применение тепловизоры получили в строительстве при оценке теплоизоляционных свойств конструкций. Так, к примеру, с помощью тепловизора можно определить области наибольших теплопотерь в строящемся доме и сделать вывод о качестве применяемых строительных материалов и утеплителей. Широкое применение тепловизоры получили в военной индустрии для координации боевых действий в темное время суток. Эта дорогостоящая аппаратура может устанавливаться на самолеты-разведчики, для оценки количества живой силы противника и ее расположения на участке боевых действий. Помимо инженерного применения с 2008-2009 гг. тепловизоры начали также активно использовать в медицинских целях - для выделения из толпы лиц инфицированных вирусом гриппа.

Электрические методы

Основаны на регистрации электростатических полей и электрических параметров контролируемого объекта. Их применяют для выявления раковин и других дефектов в отливках, расслоений в металлических листах, различных дефектов в сварных и паяных швах, трещин в металлических изделиях, растрескиваний в эмалевых покрытиях и органическом стекле и т. д. Кроме того, эти методы применяют для сортировки деталей, измерения толщин пленочных покрытий, проверки химического состава и определения степени термообработки металлических изделий. Наиболее распространенными из этих методов являются измерение электрического сопротивления, трибоэлектрический, термоэлектрический и др.

Магнитные методы

Основаны на регистрации магнитных полей рассеяния над дефектами или магнитных свойств контролируемого объекта. Применяют для обнаружения поверхностных и подповерхностных дефектов в деталях и полуфабрикатах различной формы, изготовленных из ферромагнитных материалов. К ним относятся магнитно-порошковый, магнитно-графический, феррозондовый, магнитно-индукционный и другие методы.

Магнитные поля рассеяния над дефектами регистрируются в магнитно-порошковом методе с помощью ферромагнитного порошка или суспензии, в магнитно-графическом — с помощью ферромагнитной ленты и в феррозондовом — с помощью чувствительных к магнитным полям феррозондов.

Магнитно-порошковый метод нашел широкое применение на заводах промышленности, ремонтных предприятиях и эксплуатирующих подразделениях. С его помощью надежно выявляют поверхностные трещины, микротрещины, волосовины, флокены и другие дефекты.

Общая классификация видов и средств МНК

В основе НК лежат физические процессы взаимодействия различных полей, излучений или веществ с объектами контроля. По этому признаку выделяют девять основных видов НК: магнитный, электрический, вихретоковый, радиоволновой, тепловой, оптический, радиационный, акустический, проникающими веществами. Каждый из этих видов осуществляется многими методами контроля, которые классифицируют по характеру взаимодействия физических полей с контролируемым объектом, по первичному информативному параметру и по способу получения информации (в совокупности более ста наименований по ГОСТ 18353-79 «Контроль неразрушающий. Классификация видов и методов»).

Средства неразрушающего контроля распределяются по следующим направлениям:

- дефектоскопия (обнаружение дефектов типа нарушений сплошности – трещин, раковин, расслоений и т.д.);

- контроль геометрических характеристик (наружных и внутренних диаметров; толщин стенок, покрытий и слоев; степени износа; ширины и длины изделий и т.д.);

- определение физико–механических и физико–химических характеристик (электрических, магнитных и структурных параметров, отклонений от заданного химического состава, твердости, пластичности, качества упрочненных слоев, содержания и распределения ферритной фазы и т.п.);

- техническое диагностирование (определение технического состояния объекта в период эксплуатации).

Выбор метода и прибора неразрушающего контроля для решения задач дефектоскопии, толщинометрии, структуроскопии и технического диагностирования зависит от параметров контролируемого объекта и условий его обследования.

Дефекты типа нарушений сплошности являются следствием несовершенства структуры материалов и возникают на разных стадиях технологического процесса и в процессе эксплуатации.

Основными методами неразрушающего контроля являются:

- магнитный;

- электрический;

- вихретоковый;

- акустический;

- радиационный;

- тепловой;

- радиоволновой;

- оптический;

- проникающими веществами.



Поделиться:


Последнее изменение этой страницы: 2016-09-18; просмотров: 82; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.147.67.166 (0.036 с.)