Абсорбційні методи очистки газів від оксидів азоту. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Абсорбційні методи очистки газів від оксидів азоту.



Абсорбція рідинами застосовується в промисловості для витягання з газів діоксиду сірки, сірководню та інших сірчистих сполук, оксидів азоту, пари кислот (НСI, HF, H 2 SO 4), діоксиду та оксиду вуглецю, різноманітних органічних сполук (фенол, формальдегід, летючі розчинники).

Абсорбційний метод реалізує процеси, що відбуваються між молекулами газів і рідин. Якщо відсутня взаємодія між розпилюючого рідиною і зрошуваних газом, то ефективність поглинання компонентів з пароповітряної суміші визначається тільки рівновагою пар-рідина.

Швидкість поглинання газу рідиною залежить від:

а) дифузії поглинаються речовин з газового потоку до поверхні зіткнення з поглинаючою рідиною;

б) переходу газової частинки до поверхні рідини;

в) дифузії абсорбованих речовин в промивної рідини, де встановлюється рівновага;

г) хімічної реакції (якщо вона має місце).

Абсорбційна очищення застосовується як для вилучення цінних компонентів з газового потоку та повернення їх знову в технологічний процес для повторного використання, так і для поглинання з вибросних газів шкідливих речовин з метою санітарної очистки газів. Зазвичай раціонально використовувати абсорбційну очистку, коли концентрація домішок в газовому потоці перевищує 1% (об). У цьому випадку над розчином існує певне рівноважний тиск поглинається компонента, і поглинання відбувається лише до тих пір, поки його парціальний тиск у газовій фазі вище рівноважного тиску його над розчином. Повнота вилучення компонента з газу при цьому досягається тільки при протитоку і подачі в абсорбер чистого поглинача, що не містить извлекаемого речовини. Абсорбційна очищення - безперервний і, як правило, циклічний процес, тому що поглинання домішок зазвичай супроводжується регенерацією поглинаючої розчину і його поверненням на початку циклу очищення. Застосування абсорбційного методу очищення обумовлено високою інтенсивністю абсорбційних процесів, що дозволяє створювати високопродуктивні газоочисні установки, можливістю застосування методу для очищення газів, містять і шкідливі гази, і пил, і, нарешті, наявністю величезного досвіду експлуатації абсорбційного обладнання в різних технологічних процесах і в першу чергу в хімічній технології.

Недоліки та переваги абсорбційного методу очищення газів

Абсорбційний метод очищення газів не вільний від певних недоліків, пов'язаних, перш за все, з громіздкістю обладнання. Цей метод досить примхливий в експлуатації і пов'язаний з великими витратами. До недоліків абсорбційного методу слід віднести також утворення твердих опадів, що ускладнює роботу обладнання, і корозійну активність багатьох рідких середовищ. Однак, не дивлячись на ці недоліки, абсорбційний метод ще широко застосовується в практиці газоочистки, так як він дозволяє вловлювати поряд з газами і тверді частинки, відрізняється простотою устаткування й відкриває можливості для утилізації уловлюваних домішок

Аміак, що є вихідною сировиною для виробництва азотної кислоти, володіє токсичними властивостями. Він спричиняє гострі подразнення слизистих оболонок, сльозовиділення, опіки, ускладнює функціонування органів дихання. Гранично допустимі концентрації аміаку становлять: у повітрі робочої зони — 20 мг/м3, у повітрі населених пунктів максимальна разова та середньодобова ГДК — 0,2 мг/м3.

Концентрація аміаку в газах, що підлягають очищенню, може змінюватися в широких межах — від 0,06 до 70—80 %. У промислових газах ГДК аміаку становить (в % заг,): коксовий — 0,7— 1,5; газ при виробництві ціанистого водню — 1,6; газ при виробництві карбаміду — від 0,7 до 72; газ содового виробництва — 65—67.

Найбільш простим і доступним є метод очищення газів від аміаку абсорбцією за допомогою води. У воді аміак добре розчиняється, утворюючи стійкі гідрати:

Процес поглинання аміаку здійснюється в багатоступеневих протитічних абсорберах. Регенерацію насиченого аміаком абсорбера здійснюють у тарілчастих десорберах, обладнаних дефлегматорами, нагріванням глухою або гострою парою. Виділений у регенераторі аміак використовують для отримання аміачної води та виробництва деяких солей або концентрованого робочого аміаку.

 

Очистка газів від оксидів азоту селективним каталітичним

Відновленням.

Способи очищення промислових газових викидів від оксидів азоту

Існуючі способи очищення газових викидів від оксидів азоту поділяються на такі: - абсорбційні процеси очищення з хемосорбцией NOхі їх перетворенням в інші продукти, наприклад, в азотну кислоту, нітрати, нітрити та ін. - Адсорбційні методи уловлювання оксидів азоту з одночасним частковим або повним перетворенням в інші продукти, наприклад в HNO3. - Термічні та термокаталітіческіе методи відновлення оксидів азоту до молекулярного азоту.

Характерною особливістю процесу очищення газів від оксидів азоту N0 при виробництві концентрованої азотної кислоти є високий вміст цих оксидів у нітрозних газах.

У промисловості використовують лужні та каталітичні методи очищення нітрозних газів від оксидів азоту. Лужні методи базуються на взаємодії N0 з водними розчинами лугів. Однак ці методи мають обмежене застосування внаслідок низького ступеня очищення газів.

Найбільш ефективним способом знешкодження нітрозних газів є каталітичне відновлення оксидів азоту до елементного азоту. Ефективність процесу каталітичного відновлення залежить від виду каталізатора. Найбільшою каталітичною активністю володіють каталізатори на основі платини, радію та паладію.

Як відновлювач часто використовують метан, карбоксид, водень, аміак, нафтовий, коксовий гази та ін.

Селективне каталітичне відновлення оксидів азоту

Сутність селективного термокаталітіческого відновлення NOXдо молекулярного азоту полягає в тому, що аміак за певних умов селективно взаємодіє з оксидами азоту і не реагує з киснем:

4NH3 + 6NO = 5N2 + 6Н2О

8NH3 + 6NO2 = 7N2 + 12H2O

Проте залежно від типу каталізатора можливо також відновлення NO2до N0 і окислення аміаку киснем до N2і N2O:

2NH3 + 8NO = 5N2O + 3H2O

4NH3 + 4O2 = 2N2O + 6H2O

4NH3 + 3O2 = 2N2 + 6H2O

Зіставлення констант рівноваги основних та побічної реакцій

вказує на перевагу реакцій відновлення оксидів азоту аміаком в порівнянні з реакцією аміаку з киснем.. У Росії селективна каталітична очистка використовується в агрегатах, обладнаних низькотемпературної рекуперативної турбіною. Селективне відновлення NO2і N0 аміаком до молекулярного азоту відбувається з рівною швидкістю при температурах 250 - 450 ° С на каталізаторах з платини, оксидів міді, ванадію, магнію та ін. На відміну від неселективного термокаталітіческого процесу селективне відновлення оксидів азоту здійснюється при будь-яких концентраціях кисню в хвостових газах з досягненням ступеня очищення 98% і більше. Наприклад, алюмованадіевий каталізатор АВК-10М (10% ванадію) при об'ємної швидкості газового потоку 15000 год-1, лінійної швидкості до 1 м / с і температурі 375 - 450 ° С забезпечує ступінь відновлення NOX98 - 98,5% і має термін служби 2 - 3 роки. При співвідношенні NH3: NOхравном (1,1-1,5): 1, вміст оксидів азоту у вихлопних газах не перевищує 0,002- 0,003%. Час пробігу каталізатора 2-3 роки, за цей період ступінь очищення знижується до 96%, вміст залишкового аміаку в очищеному газі не перевищує 0.01% (об). Витрата аміаку при 25-30% -му надлишку проти стехиометрии становить 2,5-3,0 кг на кожну десяту частку відсотка оксидів азоту, що містяться у вихідному газі. Невеликий надлишок аміаку пояснюється тим, що частина його все ж взаємодіє з киснем:

4NH3 + 3O2 = 2N2 + 6H2O

В якості каталізаторів селективного відновлення оксидів азоту випробувані різні метали (у тому числі і благородні), оксиди металів, шпінелі, перовскіту в чистому, змішаному і нанесеному видах. Каталітична активність каталізаторів процесу при 200-350 ° С і швидкості 10 тис. Ч-1убивает в послідовності:

Pt> MgO> V2О5> CuO> Fe2O3> Cr2O3> Co2O3> MoO3> NiO> Ag2O> ZnO> Bi2O3> Al2O5> SiO2> PbO2.

Паладій різко знижує свою активність в ході процесу. Високою активністю володіють оксиди марганцю, ванадію, заліза, хрому, міді та кобальту.

До недоліків цього виду очищення ставляться трудність точного дозування невеликих кількостей аміаку в газ після абсорбційних колон і рівномірного розподілу його в газовому потоці, а також освіти в трактах після очищення нітрит-нітратів амонію. Для виключення утворення останніх температуру газів, що викидаються в атмосферу після рекупераційних турбін, підтримують вище 200 ° С.

Схема технологічного процесу селективного відновлення NOXв виробництві азотної кислоти наведена на рис. 1.

Хвостові гази з абсорбера поступають в підігрівач і з температурою 50 ° С направляються в блок нагріву газів БНГ - 172. останній складається з регенератора тепла, конвективного і радіантні підігрівачів і воздухоподогревателя.

У блоці нагріву хвостові гази спочатку проходять через регенератор, де нагріваються до 290 ° С. Для цього використовується тепло розширених газів після газової турбіни, температура яких знижується від 370 до 146 ° С. Після регенератора хвостові гази проходять через конвективний підігрівач, обігрівається димовими газами. При цьому температура хвостових газів підвищується від 290 до 453 ° С, а димових - знижується від 935 до 390 ° С. Потім хвостові гази надходять в радіантні підігрівач, обігрівається також димовими газами, де нагріваються від 453 до 780 ° С і подаються в змішувач газів 5. для більш повної утилізації тепла димових газів повітря, що подається в пальники природного газу, попередньо нагрівається до 200 ° С, а димові гази при цьому охолоджуються від 390 до 250 ° С.

У змішувачі гарячі хвостові гази змішуються з аміаком і надходять в реактор каталітичного очищення. Реактор являє собою горизонтальний циліндричний апарат з шаром алюмомедьцінкового каталізатора (АЦМ-10) висотою 800 мм і об'ємом 22,8 м3. тривалість роботи каталізатора - 3 роки. Селективне каталітичне відновлення NOXамміаком відбувається при температурі близько 350 ° С і тиску 1,14 МПа. При цьому лінійна швидкість газів становить 0,4 м / с, а об'ємна швидкість - 7500 м3 / год на 1 м3каталізатора. Після рекуперації тепла в блоці нагрівання й енергії тиску в газовій турбіні очищені гази змішуються з димовими газами і викидаються в атмосферу. Призначення турбін 8-10 таке ж, як при неселективних відновленні оксидів азоту. Зміст NOXв вихлопних газах не перевищує 0,006% об., Аміаку - 0,01%. У порівнянні з неселективними методами, даний спосіб дозволяє знизити витрати природного газу на 15%, виключає застосування дорогого каталізатора АПК-2, у вихлопних газах відсутні оксид вуглецю і метан.

Очищення газів від оксидів азоту у виробництві неконцентрованої азотної кислоти на алюмованадіевом оксидному каталізаторі АВК-10 в присутності аміаку не завжди задовольняє вимогам за залишковим змістом аміаку в очищеному газі. Використання так званого двошарового каталізатора дозволяє досягати високі ступеня очищення від оксидів азоту та аміаку.

Двошаровий каталізатор складається з шару алюмованадіевого (АВК-10, АВК-10М, АВК-10Ш) і шару железохромового (СТК-1, СТК-2, СІК-482, СТК-482-МФ) каталізатора. Співвідношення обсягів становить 1: 1. оптимальні умови очищення наступні: Т = 250-290 ° С; Р = 0,4 МПа; об'ємна швидкість становить 7000 год-1. вміст оксидів азоту у вихідному газовому потоці 0,1-0,3 об., співвідношення NOх: NH3 = 1: (0,8-1,1).

 

 



Поделиться:


Последнее изменение этой страницы: 2016-09-13; просмотров: 435; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.135.219.166 (0.142 с.)