Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Аппаратное обеспечение компьютерных сетей.↑ ⇐ ПредыдущаяСтр 5 из 5 Содержание книги
Поиск на нашем сайте
Для объединения компьютеров в локальных сетях наиболее часто используются сетевые адаптеры (сетевые карты), концентраторы, коммутаторы, маршрутизаторы. Рассмотрим более подробно каждый тип оборудования. Сетевой адаптер – это устройство необходимое для подключения компьютера к локальной сети. Сетевой адаптер устанавливается в свободный слот (разъем) материнской платы компьютера, как и адаптеры, выполняющие другие функции, например видеоадаптер. Сетевые адаптеры можно классифицировать по следующим признакам: · в зависимости от типа и разрядности используемой в компьютере внутренней шины; · в зависимости от типа принятой в сети сетевой технологии – Ethernet, Token Ring, FDDI и т. д.; · в зависимости от типа среды (канала) передачи данных – коаксиальный кабель, оптоволоконный кабель, кабель типа витая пара. Сетевой адаптер присоединяется к кабелю с помощью специальных коннекторов. Для кабеля типа витая пара используется коннектор типа RG-45, внешне напоминающий разъем для подключения телефона. Для подключения к коаксиальному кабелю используются так называемые BNC-коннекторы и Т-коннекторы. Существуют сетевые адаптеры, использующие беспроводной принцип взаимодействия. В настоящее время тремя главными типами беспроводной передачи данных являются радиосвязь, связь в микроволновом диапазоне и инфракрасная связь. Наиболее распространенным, в настоящее время, вариантом организации беспроводной локальной сети является использование WiFi оборудования. WiFi является аббревиатурой от «Wireless Fidelity» (беспроводная связь) и представляет собой стандарт беспроводного доступа, обеспечивающий скорость передачи информации до 54 Мбит/сек. Каждый сетевой адаптер имеет уникальный внутренний номер, так называемый MAC-адрес, позволяющий однозначно идентифицировать источник информации в сетевой среде. Различные типы кабелей используются в качестве носителей, или среды передачи данных. Хотя беспроводные технологии передачи данных становятся все более популярными в настоящее время, основным типом носителя для сетевых коммуникаций остается кабель. Наиболее распространены кабели следующих типов: · кабель типа витая пара; · коаксиальный кабель; · оптоволоконный кабель. Кабель типа витая пара – наиболее распространенный в настоящее время тип кабеля, бывает двух видов: неэкранированная и экранированная витая пара. Внутренняя конструкция состоит из нескольких скрученных пар медных проводов, окруженных заземленной оболочкой из медной сетки, или алюминиевой фольги, в случае экранированной витой пары. Существует несколько типов неэкранированной витой пары. В настоящее время наиболее часто используются тип UTP-5 (UTP – Unshielded Twisted Pair). Кабель UTP-5 обеспечивает скорость передачи информации до 1000 Мбит/сек. Кабель типа неэкранированная витая пара – это наиболее дешевый и простой в установке тип кабеля. Но у него существуют и недостатки. Кабель чувствителен к помехам со стороны внешних электромагнитных источников и взаимному наложению сигналов между отдельными проводами самого кабеля. Длина кабельного сегмента, т.е. расстояние от компьютера до усилителя (повторителя) сигнала не может превышать 100 метров, поскольку сигнал ослабевает при перемещении по кабелю. Кабель типа экранированная витая пара (STP – Shielded Twisted Pair) в меньшей степени подвержен внешним электромагнитным воздействиям, более сложен в установке. Длина кабельного сегмента также ограничена 100 метрами. Коаксиальный кабель напоминает кабель, который используется для подключения антенны к бытовому телевизору. Скорость передачи данных по этому типу носителя составляет 10 Мбит/сек. Длина кабельного сегмента может составлять от 185 до 500м, в зависимости от типа коаксиального кабеля. Наибольшее распространение получили так называемый «тонкий» маркировка RG-58 и «толстый» кабель маркировка RG-8 и RG-11. Данный тип кабеля устарел и мало используется в настоящее время. Оптоволоконный кабель является в настоящее время самой совершенной, но и самой дорогой средой для передачи информации. Оптическое волокно изготовлено из кварца, основу которого составляет двуокись кремния. Кабель состоит из центрального волоконного проводника, по которому и распространяется световой сигнал, окруженного другим слоем волокна. Показатель преломления светового луча у двух этих слоев разный. Существует два типа кабелей: одномодовый, в котором может распространяться только один луч, и многомодовый, в котором может распространяться большое число лучей. В одномодовом волокне диаметр центрального волоконного проводника несколько меньше чем в многомодовом. Скорость передачи информации при использовании данного типа кабеля достигает 10 Gb/сек (10000 Мбит/сек). Оптоволоконный кабель используется в основном в глобальных и региональных сетях, а также на магистралях больших локальных сетей. Концентратор (многопортовый повторитель, или HUB) – это устройство, используемое для объединения отдельных рабочих мест (компьютеров) в локальную сеть. Современные концентраторы имеют, как правило, 8, 12, 16, 24, или 48 портов (разъемов) для подключения компьютеров. Все порты концентратора равноправны. При получении сигнала от одного из подключенных к нему компьютеров концентратор транслирует его на все остальные порты. Таким образом, концентратор является центральной точкой соединения компьютеров в сети. Кроме функции соединения компьютеров концентратор может выполнять еще несколько функций. Это: усиление (повторение) сигнала, автосегментация (автоматическое отключение неисправных портов), обеспечение сбора статистики по загрузке сети. Концентраторы можно соединять друг с другом для увеличения размера сети. Коммутатор (switch) – это устройство, которое также может использоваться для объединения компьютеров, или различных сегментов локальной сети (ЛС). В отличии от концентратора, коммутатор при получении сигнала (пакета данных) от одного из подключенных к нему компьютеров не транслирует его на все остальные порты, а передает его только в тот порт, к которому подключен компьютер, являющийся получателем этого пакета данных. В результате скорость передачи данных увеличивается, поскольку в сети сокращается количество коллизий, характерных для технологии Ethernet. ЛC имеют свойство перерастать начальные проекты. С ростом компаний растут и ЛС. Изменение профиля деятельности или организации работы компании могут потребовать переконфигурации сети. Это становится очевидным, когда:
Сети не могут расширяться за счет простого добавления рабочих станций и прокладки кабеля. Любая топология или архитектура имеет свои ограничения. Однако существуют устройства, которые могут:
К таким устройствам относятся: репитеры, мосты, маршрутизаторы, мосты-маршрутизаторы и шлюзы. Репитеры Это устройства, которые принимают затухающий сигнал из одного сегмента сети, восстанавливают его и передают в следующий сегмент, чем повышают дальность передачи сигналов между отдельными узлами сети (рис. ниже). Репитеры передают весь трафик в обоих направлениях и работают на физическом уровне модели OSI. Это означает, что каждый сегмент должен использовать одинаковые: форматы пакетов, протоколы и методы доступа. То есть, с помощью репитера можно объединить в единую сеть два сегмента Ethernet и невозможно Ethernet и Token Ring. Однако репитеры позволяют соединять два сегмента, которые используют различные физические среды передачи сигналов (кабель - оптика, кабель - пара и т. д.). Некоторые многопортовые репитеры работают как многопортовые концентраторы, соединяющие разные типы кабелей. Применение репитеров оправдано в тех случаях, когда требуется преодолеть ограничение по длине сегмента или по количеству РС. Причем ни один из сегментов сети не генерирует повышенного трафика, а стоимость ЛВС - главный фактор. Связано это с тем, что репитеры не выполняют функций: изоляции и фильтрации. Так передавая из сегмента в сегмент каждый бит данных, они будут передавать и искаженные пакеты, и пакеты, не предназначенные этому сегменту. В результате проблемы одного сегмента скажутся и на других. Т.е. применение репитеров не обеспечивает функцию изоляции сегментов. Кроме того, репитеры будут распространять по сети все широковещательные пакеты. И если устройство не отвечает на все пакеты или пакеты постоянно пытаются достичь устройств, которые никогда не отзываются, то производительность сети падает, т. е. репитеры не осуществляют фильтрацию сигналов. Мосты Мост - это устройство, соединяющее две сети, использующие одинаковые методы передачи данных. Эти устройства, как и репитеры, могут:
Принципы работы мостов Работа моста основана на принципе, согласно которому все узлы сети имеют уникальные сетевые адреса, и мост передает пакеты исходя из адреса узла назначения (рис. ниже). Управляя доступом к сети, мост:
Мост обладает некоторым "интеллектом", поскольку изучает, куда направить данные. Когда пакеты передаются через мост, адреса передатчиков сохраняются в памяти моста, и на их основе создается таблица маршрутизации. В начале работы таблица пуста. Затем, когда узлы передают пакеты, их адреса копируются в таблицу. Имея эти данные, мост изучает расположение компьютеров в сегментах сети. Прослушивая трафик всех сегментов, и принимая пакет, мост ищет адрес передатчика в таблице маршрутизации. Если адрес источника не найден, он добавляет его в таблицу. Затем сравнивает адрес получателя с БД таблицы маршрутизации.
Короче говоря, если мост знает о местоположении узла - адресата, он передает пакет ему. В противном случае - транслирует пакет во все сегменты. Рассмотренный вариант соответствует наиболее простым, так называемым прозрачным мостам. В настоящее время находят применение мосты с алгоритмом остовного дерева, мосты с маршрутизацией от источника и др. Назначение мостов
Различают локальные и удаленные мосты. Удаленные мосты используются в больших сетях, когда ее отдельные сегменты связываются телефонными (или иными) каналами связи. Однако если для соединения двух кабельных сегментов ЛВС используют только один локальный мост, то в крупных сетях приходится использовать два удаленных моста, подключенных через синхронные модемы к выделенному каналу связи (рис. ниже). Маршрутизаторы Маршрутизатор - это устройство для соединения сетей, использующих различные архитектуры и протоколы. Работая на сетевом уровне модели OSI, они могут:
Маршрутизатор в отличие от моста имеет свой адрес и используется как промежуточный пункт назначения.
|
||||
Последнее изменение этой страницы: 2016-09-13; просмотров: 3034; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 52.14.90.36 (0.01 с.) |